-
部分相干光在实际中经常遇到,部分相干是光束的基本特性,但部分相干涡旋光束因部分空间相干性使其在强非局域非线性介质(SNNM)不能够形成光孤子.本文采用广义衍射积分理论与SNNM变换矩阵相结合的方法,推导出了扭曲部分相干涡旋(TPCV)光束在SNNM中的解析传输公式.研究发现:由于光束的扭曲特性,TPCV光束即使在极低的空间相干性下也能够在SNNM中形成环状光孤子,本文还给出了其形成光孤子的条件.并且,TPCV光束相干性越差,其环状光孤子的亮度越高,梯度力越大,因此它在光学操控应用领域具有潜力.另一方面,研究表明:TPCV光束与扭曲高斯谢尔模型光束同轴非相干合成光束在一定条件下也能够在SNNM中形成光孤子,且该条件与光束相干度、拓扑荷数和子光束功率占比无关.此外,通过调控光束相干度可调控合成光束梯度力,通过调控拓扑荷数和子光束功率占比可实现不同轮廓的光孤子.本文研究结果在光学操控、材料加工和光束整形等领域具有重要意义.
-
关键词:
- 扭曲部分相干涡旋光束 /
- 强非局域非线性介质 /
- 光束传输特性 /
- 光孤子
The optical solitons have been of considerable interest for a long time because of the important applications, such as all-optical information processing (e.g. all-optical switch, and all-logic gates, etc.), optical manipulation and beam control, etc. It was shown that an annular optical soliton may be formed when a fully coherent vortex beam propagates in strongly nonlocal nonlinear media (SNNM). The annular optical soliton with vortex has more advantages in applications than the Gaussian-like optical soliton without vortex. In practice, partially coherent beams are often encountered, and the partial coherence is one of the main features of laser beams. However, when a partially coherent vortex beam propagates in SNNM, an optical soliton cannot be formed due to partial coherence. The aim of this paper is to find a kind of partially coherent vortex soliton.
Based on the extended diffraction integral principle together with the ABCD matrix of SNNM, the analytical propagation formula of twisted partially coherent vortex(TPCV)beams in SNNM is derived in this paper. It is found that an annular optical soliton may be formed in SNNM because of the twist feature of TPCV beams, even if the spatial coherence is extremely low. The conditions for the formation of annular optical solitons of TPCV beams in SNNM are also given in this paper. In addition, it is shown that the intensity and the gradient force of annular optical solitons increase as the partial coherence of TPCV beams decreases, which may be applied in optical manipulation.
On the other hand, under certain conditions, an optical soliton may also be formed, when a TPCV beam and a twisted Gaussian Schell-model (TGSM) beam are combined coaxially and incoherently in SNNM. The conditions for the formation of optical solitons of the combined beams in SNNM are independent of the beam coherence degree, the topological charge, and the proportion of sub-beam power. Furthermore, the gradient force can be manipulated by the beam coherence degree, and the profile of optical solitons can be manipulated by the topological charge and the proportion of sub-beam power. The results obtained in this paper is useful for optical manipulation, material processing, and beam control.-
Keywords:
- Twisted Partially Coherent Vortex Beams /
- Strongly nonlocal nonlinear media (SNNM) /
- Beam propagation characteristics /
- Optical soliton
-
[1] Han Y, Guo Y B, Gao B, Ma C Y, Zhang R H, Zhang H 2020 Prog. Quantum. Electron 71 100264
[2] Han Y, Gao B, Wen H L, Ma C Y, Huo J Y, Li Y Y, Zhou L Y, Li Q, Wu G, Liu L 2024 Light Sci. Appl. 13 101
[3] Sheppard A 1993 Opt. Commun 102 317
[4] Yi H H, Yao Y, Zhang X, Ma G 2023 Chin. Phys. B 32 100509
[5] Yi H H, Li X F, Zhang J L, Zhang X, Ma G L 2024 Chin. Phys. B 33 100502
[6] Song L M, Yang Z J, Zhang S M, Li X L 2019 Phys. Rev. A 99 063817
[7] Ouyang S G, Hu W, Guo Q 2007 Phys. Rev. A 76 053832
[8] Snyder A W, Mitchell D J 1997 Science 276 1538
[9] Conti C, Peccianti M, Assanto G 2004 Phys. Rev. Lett 92 113902
[10] Guan S Y, Huang H, Weng Z W, Xu Y Z, Wu L J, Guo Q, Hu W, Shou Q 2023 New J. Phys 25 083012
[11] Deng D M, Guo Q 2008 J. Opt. A 10 035101
[12] Deng D M, Zhao X, Guo Q, Lan S 2007 J. Opt. Soc. Am. B 24 2537
[13] Zhang H C, Zhou T, Dai C Q 2022 Phys. Rev. A 105 013520
[14] Wang H R, Zhang Y C, Hu Wei, Guo Q 2023 Acta Phys. Sin.72 219(in Chinese) [汪浩然,张银川,胡巍,郭旗 2023 物理学报 72 219]
[15] Peccianti M, Assanto G 2002 Phys. Rev. E 65 035603
[16] Peccianti M, Assanto G 2001 Opt. Lett 26 1791
[17] Królikowski W, Bang O, Wyller J 2004 Phys. Rev. E 70 036617
[18] Shen M, Wang Q, Shi J L, Hou P, Kong Q 2006 Phys. Rev. E 73 056602
[19] Zhang N Y, He L, Ji X L, Li X Q 2024 RESULTS PHYS 59 107613
[20] He L, Zhang N Y, Yu H, Ji X L 2024 J. Opt. Soc. Am. A 41 1893
[21] Zhang N Y, Deng Y, Wang D L, Ji X L 2025 Phys. Lett. A 130977
[22] Wang X G, Ma Y B, Yuan Q J, Chen W, Wang L, Zhao S M 2024 Chin. Phys. B 33 024208
[23] Ng J, Lin Z F, Chan C 2010 Phys. Rev. Lett 104 103601
[24] Cai X L, Wang J W, Strain M J, Johnson-Morris B, Zhu J B, Sorel M, O’Brien J L, Thompson M G, Yu S Y 2012 Science 338 363
[25] Dai J H, Guo Q, Shi X R 2023 Acta Phys. Sin.56 4642(in Chinese) [戴继慧,郭旗,史信荣2023 物理学报 56 4642]
[26] Neshev D N, Alexander T J, Ostrovskaya E A, Kivshar Y S, Martin H, Makasyuk I, Chen Z G 2004 Phys. Rev. Lett 92 123903
[27] Wang D L, Zhang N Y, Yu H, Ji X L, Li X Q 2025 J. Opt. Soc. Am. A 42 647
[28] Peng X F, Liu L, Wang F, Popov S, Cai Y J 2018 Opt. Express 26 33956
[29] Kimel I, Elias L R 2002 IEEE J. Quantum Electron.29 2562
[30] Lu D Q, Hu W, Zheng Y J, Liang Y B, Cao L G, Lan S, Guo Q 2008 Phys. Rev. A 78 043815
[31] Zhang Z X, Li Y X, Cui J N, Deng Y, Li X Q, Ji X L 2025 OPT LASER TECHNOL 192 113974
[32] Cai Y J, Chen C Y 2007 J. Opt. Soc. Am. A 24 2394
[33] Wang F, Zhu S J, Cai Y 2011 Opt. Lett 36 3281
[34] Yang Z J, Lu D Q, Hu W, Zheng Y Z, Gao X H, Guo Q 2010 Phys. Lett. A 374 4007
[35] Gori F, Santarsiero M, Borghi R,Vicalvi S 1998 J. Mod. Opt 45 539
[36] Bi J, Wu L K, Li S D, Yang Z Y, Jia X D, Starostenkov M D, Dong G J 2023 J MATER RES TECHNOL 26 4606
计量
- 文章访问数: 23
- PDF下载量: 0
- 被引次数: 0








下载: