搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

色散效应对光学参量放大器量子起伏特性的影响

赵超樱 谭维翰

引用本文:
Citation:

色散效应对光学参量放大器量子起伏特性的影响

赵超樱, 谭维翰

Quantum fluctuations of the optical parametric amplification system under the consideration of dispersion

Zhao Chao-Ying, Tan Wei-Han
PDF
导出引用
  • 解析求解了包含色散、损耗和抽运吃空的含时的Fokker-Planck方程,通过数值计算首先获得了色散时简并参量放大(DOPA)系统的光压缩特性.研究结果表明:色散效应是由非线性极化率从χ″增大到χ″/{1+σ2/}/+2而引起的.随着色散效应的逐渐增大,压缩曲线的形状基本相同,且整体向左收缩,最大压缩趋近于线性理论的结果1/(1+μ).还获得了色散时非简并参量放大(NOPA)系统的光纠缠特性.研究发现:当σ给定,随着抽运参数μ的增大,相应的相位变化也增大,非线性极化率的极性发生多次变化,极性为正阶段的增益大部分被极性为负阶段的衰减所抵消,净增益不大,压缩也不大,最小均方差V1的值逐渐减小,且整体向右移动,接近于线性理论的结果1/(1+μ).
    In this paper, we first find out the analytic solution of the time-dependent Fokker-Planck equation of the non-degenerate optical parametric amplification (NOPA) system under the consideration of the dispersion, the loss and the pump depletion effects. Then, through the numerical calculation, we obtain the squeezing characteristic of the degenerate optical parametric amplification (DOPA) system with dispersion. the research indicates: the dispersion effect stems from the nonlinear susceptibility change from χ″ toχ″/{1+σ2/}/+2, with the increasing of the dispersion effect, the general feature of the squeezing curves beeps unchanged, and the curves contract toward left. The maximum squeezing approaches to the linear theory 1/(1+μ). Finally, we obtain the entanglement characteristic of the NOPA system with dispersion. We find out when σ is given, with the increasing of pump parameter μ, he corresponding phase makes a large change. The nonlinear susceptibility changes many times. When the polarity is positive, the system obtains the gain, when the polarity is negative, the system suffers the loss, but the gain is mainly dissipated by the loss, so the net gain is small, the squeezing is also small. The minimum variance V1 reduces gradually, and the whole curve moves to the right, approaches to the linear theory 1/(1+μ).
    • 基金项目: 山西省自然科学基金 (批准号:2006011003)资助的课题.
    [1]

    [1]Braunstein S L, Loock P V 2005 Rev. Mod. Phys. 77 513

    [2]

    [2]Furusawa A, Srensen J L, Braunstein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282 706

    [3]

    [3]Li X, Pan Q, Jing J, Zhang J, Xie C, Peng K 2002 Phys. Rev. Lett. 88 047904

    [4]

    [4]Zhang J, Xie C D, Peng K C 2003 Europhys. Lett. 61 579

    [5]

    [5]Takeno Y, Yukawa M, Yonezawa H, Furusawa A 2007 Opt. Express 15 4321

    [6]

    [6]Vahlbruch H, Mehmet M, Chelkowski S, Hage B, Franzen A, Lastzka N, Goβler S, Danzmann K, Schnabel R 2008 Phys. Rev. Lett. 100 033602

    [7]

    [7]Hétet G, Glckl O, Pilypas K A, Harb C C, Buchler B C, Bachor H A, Lam P K 2007 J. Phys. B: At. Mol. Opt. Phys. 40 221

    [8]

    [8]Kim C, Kumar P 1994 Phys. Rev. Lett. 73 1605

    [9]

    [9]Hirano T, Kotani K, Ishibashi T, Okude S, Kuwamoto T 2005 Opt. Lett. 30 1722

    [10]

    ]Eto Y, Tajima T, Zhang Y, Hirano T 2007 Opt. Lett. 32 1698

    [11]

    ]Yu C X, Haus H A, Ippen E P 2001 Opt. Lett. 26 669

    [12]

    ]Werner M J, Raymer M G, Beck M, Drummond P D 1995 Phys. Rev. A 52 4202

    [13]

    ]Wenger J, Tualie-Brouri R, Grangier P 2004 Opt. Lett. 29 1267

    [14]

    ]Takahashi Y, Soderholm J, Hirano K, Namekata N, Machida S, Mori S, Kurimura S, Komatsu S, Inoue S 2008 Phys. Rev. A 77 043801

    [15]

    ]Golubeva T, Ivanov D, Golubev Yu 2008 Phys. Rev. A 77 052316

    [16]

    ]Zhao C Y, Tan W H 2006 J. Mod. Opt. 53 1965

    [17]

    ]Zhao C Y, Tan W H 2006 J. Opt. Soc. Am. B 23 2174

    [18]

    ]Zhao C Y, Tan W H 2007 J. Mod. Opt. 54 97

    [19]

    ]Zhao C Y, Tan W H 2007 Chin. Phys. 16 1009

    [20]

    ]Walls D F, Milburn G J 1994 Quantum Opt. (2nd Ed.) (NewYork: Springer) p178

    [21]

    ]Reid M D, Drummond P D 1989 Phys. Rev. A 40 4493

    [22]

    ]Shang Y N, Wang D, Yan Z H, Wang W Z,Jia X J, Peng K C 2008 Acta Phys.Sin. 57 3514 (in Chinese) [商娅娜、 王东、 闫智辉、 王文哲、 贾晓军、 彭堃墀 2008 物理学报 57 3514]

    [23]

    ]Ye C G, Zhang J 2008 Acta Phys.Sin. 57 6962 (in Chinese) [叶晨光、 张靖 2008 物理学报 57 6962]

    [24]

    ]Kuang M H, Ma S J, Liu D M, Wang S J 2009 Chin. Phys. B 18 1065

  • [1]

    [1]Braunstein S L, Loock P V 2005 Rev. Mod. Phys. 77 513

    [2]

    [2]Furusawa A, Srensen J L, Braunstein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282 706

    [3]

    [3]Li X, Pan Q, Jing J, Zhang J, Xie C, Peng K 2002 Phys. Rev. Lett. 88 047904

    [4]

    [4]Zhang J, Xie C D, Peng K C 2003 Europhys. Lett. 61 579

    [5]

    [5]Takeno Y, Yukawa M, Yonezawa H, Furusawa A 2007 Opt. Express 15 4321

    [6]

    [6]Vahlbruch H, Mehmet M, Chelkowski S, Hage B, Franzen A, Lastzka N, Goβler S, Danzmann K, Schnabel R 2008 Phys. Rev. Lett. 100 033602

    [7]

    [7]Hétet G, Glckl O, Pilypas K A, Harb C C, Buchler B C, Bachor H A, Lam P K 2007 J. Phys. B: At. Mol. Opt. Phys. 40 221

    [8]

    [8]Kim C, Kumar P 1994 Phys. Rev. Lett. 73 1605

    [9]

    [9]Hirano T, Kotani K, Ishibashi T, Okude S, Kuwamoto T 2005 Opt. Lett. 30 1722

    [10]

    ]Eto Y, Tajima T, Zhang Y, Hirano T 2007 Opt. Lett. 32 1698

    [11]

    ]Yu C X, Haus H A, Ippen E P 2001 Opt. Lett. 26 669

    [12]

    ]Werner M J, Raymer M G, Beck M, Drummond P D 1995 Phys. Rev. A 52 4202

    [13]

    ]Wenger J, Tualie-Brouri R, Grangier P 2004 Opt. Lett. 29 1267

    [14]

    ]Takahashi Y, Soderholm J, Hirano K, Namekata N, Machida S, Mori S, Kurimura S, Komatsu S, Inoue S 2008 Phys. Rev. A 77 043801

    [15]

    ]Golubeva T, Ivanov D, Golubev Yu 2008 Phys. Rev. A 77 052316

    [16]

    ]Zhao C Y, Tan W H 2006 J. Mod. Opt. 53 1965

    [17]

    ]Zhao C Y, Tan W H 2006 J. Opt. Soc. Am. B 23 2174

    [18]

    ]Zhao C Y, Tan W H 2007 J. Mod. Opt. 54 97

    [19]

    ]Zhao C Y, Tan W H 2007 Chin. Phys. 16 1009

    [20]

    ]Walls D F, Milburn G J 1994 Quantum Opt. (2nd Ed.) (NewYork: Springer) p178

    [21]

    ]Reid M D, Drummond P D 1989 Phys. Rev. A 40 4493

    [22]

    ]Shang Y N, Wang D, Yan Z H, Wang W Z,Jia X J, Peng K C 2008 Acta Phys.Sin. 57 3514 (in Chinese) [商娅娜、 王东、 闫智辉、 王文哲、 贾晓军、 彭堃墀 2008 物理学报 57 3514]

    [23]

    ]Ye C G, Zhang J 2008 Acta Phys.Sin. 57 6962 (in Chinese) [叶晨光、 张靖 2008 物理学报 57 6962]

    [24]

    ]Kuang M H, Ma S J, Liu D M, Wang S J 2009 Chin. Phys. B 18 1065

  • [1] 罗小军, 石立华, 张琪, 邱实, 李云, 刘毅诚, 段艳涛. 一次人工触发闪电回击过程的光辐射色散特性分析. 物理学报, 2022, 71(17): 179201. doi: 10.7498/aps.71.20220479
    [2] 刘奎, 马龙, 苏必达, 李佳明, 孙恒信, 郜江瑞. 基于非简并光学参量放大器产生光学频率梳纠缠态. 物理学报, 2020, 69(12): 124203. doi: 10.7498/aps.69.20200107
    [3] 周康, 黎华, 万文坚, 李子平, 曹俊诚. 太赫兹量子级联激光器频率梳的色散. 物理学报, 2019, 68(10): 109501. doi: 10.7498/aps.68.20190217
    [4] 耿易星, 李荣凤, 赵研英, 王大辉, 卢海洋, 颜学庆. 色散对双晶交叉偏振滤波输出特性的影响. 物理学报, 2017, 66(4): 040601. doi: 10.7498/aps.66.040601
    [5] 马亚云, 冯晋霞, 万振菊, 高英豪, 张宽收. 连续变量1.34 m量子纠缠态光场的实验制备. 物理学报, 2017, 66(24): 244205. doi: 10.7498/aps.66.244205
    [6] 李政颖, 孙文丰, 李子墨, 王洪海. 基于色散补偿光纤的高速光纤光栅解调方法. 物理学报, 2015, 64(23): 234207. doi: 10.7498/aps.64.234207
    [7] 严晓波, 杨柳, 田雪冬, 刘一谋, 张岩. 参量放大器腔中光力诱导透明与本征模劈裂性质. 物理学报, 2014, 63(20): 204201. doi: 10.7498/aps.63.204201
    [8] 陈翔, 张心贲, 祝贤, 程兰, 彭景刚, 戴能利, 李海清, 李进延. 色散补偿光子晶体光纤结构参数对其色散的影响. 物理学报, 2013, 62(4): 044222. doi: 10.7498/aps.62.044222
    [9] 郭淑艳, 叶蓬, 滕浩, 张伟, 李德华, 王兆华, 魏志义. 反射式棱栅对展宽器用于啁啾脉冲放大激光的研究. 物理学报, 2013, 62(9): 094202. doi: 10.7498/aps.62.094202
    [10] 吕金光, 梁静秋, 梁中翥. 空间调制傅里叶变换光谱仪分束器色散特性研究. 物理学报, 2012, 61(14): 140702. doi: 10.7498/aps.61.140702
    [11] 王伟, 杨博. 菱形纤芯光子晶体光纤色散与双折射特性分析. 物理学报, 2012, 61(6): 064601. doi: 10.7498/aps.61.064601
    [12] 陈爱喜, 陈渊, 邓黎, 邝耘丰. 非对称半导体量子阱中自发辐射相干诱导透明. 物理学报, 2012, 61(21): 214204. doi: 10.7498/aps.61.214204
    [13] 赵岩, 施伟华, 姜跃进. 中心外缺陷对带隙型光子晶体光纤色散特性的影响. 物理学报, 2010, 59(9): 6279-6283. doi: 10.7498/aps.59.6279
    [14] 黄小东, 张小民, 王建军, 许党朋, 张锐, 林宏焕, 邓颖, 耿远超, 余晓秋. 色散对高能激光光纤前端FM-AM效应的影响. 物理学报, 2010, 59(3): 1857-1862. doi: 10.7498/aps.59.1857
    [15] 李林栗, 冯国英, 杨浩, 周国瑞, 周昊, 朱启华, 王建军, 周寿桓. 纳米光纤的色散特性及其超连续谱产生. 物理学报, 2009, 58(10): 7005-7011. doi: 10.7498/aps.58.7005
    [16] 聂志强, 李 岭, 姜 彤, 沈磊剑, 李沛哲, 甘琛利, 宋建平, 张彦鹏, 卢克清. 倒V形四能级亚飞秒极化拍的三光子吸收和色散. 物理学报, 2008, 57(1): 243-251. doi: 10.7498/aps.57.243
    [17] 赵兴涛, 侯蓝田, 刘兆伦, 王 伟, 魏红彦, 马景瑞. 改进的全矢量有效折射率方法分析光子晶体光纤的色散特性. 物理学报, 2007, 56(4): 2275-2280. doi: 10.7498/aps.56.2275
    [18] 赵超樱, 谭维翰. 含时的线性驱动简并参量放大系统的量子起伏. 物理学报, 2005, 54(10): 4526-4531. doi: 10.7498/aps.54.4526
    [19] 李曙光, 刘晓东, 侯蓝田. 光子晶体光纤色散补偿特性的数值研究. 物理学报, 2004, 53(6): 1880-1886. doi: 10.7498/aps.53.1880
    [20] 任国斌, 王 智, 娄淑琴, 简水生. 高折射率芯Bragg光纤的色散特性研究. 物理学报, 2004, 53(6): 1862-1867. doi: 10.7498/aps.53.1862
计量
  • 文章访问数:  8425
  • PDF下载量:  757
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-04-10
  • 修回日期:  2009-06-29
  • 刊出日期:  2010-02-05

/

返回文章
返回