搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于非简并光学参量放大器产生光学频率梳纠缠态

刘奎 马龙 苏必达 李佳明 孙恒信 郜江瑞

引用本文:
Citation:

基于非简并光学参量放大器产生光学频率梳纠缠态

刘奎, 马龙, 苏必达, 李佳明, 孙恒信, 郜江瑞

Generation of continuous variable frequency comb entanglement based on nondegenerate optical parametric amplifier

Liu Kui, Ma Long, Su Bi-Da, Li Jia-Ming, Sun Heng-Xin, Gao Jiang-Rui
PDF
HTML
导出引用
  • 实验研究了阈值以下非简并光学参量放大器中的频率梳纠缠特性, 在实验上制备了具有频率梳结构的Einstein-Podolsky-Rosen纠缠, 实验中对5对频率梳边带间纠缠进行了测量, 纠缠度约为4.5 dB. 该频率梳纠缠态作为一种可扩展的量子信息系统, 可为实现频分复用的多通道离物传态的实验提供必要的光源, 为未来大容量的量子通信与网络提供了新思路.
    Continuous variable (CV) quantum squeezed state and entangled state are important quantum resources, which have been widely used in quantum communication, quantum metrology and quantum computation. In recent years, people have paid much attention to the multi-mode optical parametric amplifier (OPO) process because the multi-mode non-classical light field is able to construct the multiplexing quantum information system for improving the working efficiency and channel capacity. As a special multi-mode optical field, optical frequency comb has been used in optical frequency measurement, atomic spectroscopy and frequency-division multiplex-based communication. Especially, there are a number of notable researches where quantum frequency combs are used, which exhibit multimode-entangled photon states. The quantum frequency combs provide a promising platform for quantum information technology based on time-bin-encoded qubits. In this paper, the entanglement characteristics of frequency comb in type II nondegenerate optical parametric amplifier (NOPA) below threshold are investigated experimentally. The bipartite entanglement with frequency comb structure between idle light ($\hat a_{{\rm{i}}, + n\varOmega }^{{\rm{out}}}$) and signal light($\hat a_{{\rm{s}}, + n\varOmega }^{{\rm{out}}}$) is generated by the NOPA whose free spectral range (Ω) is 1.99 GHz operated in the de-amplification state and then analyzed by dual balanced homodyne detection system (BHD) with different values of frequency $\omega \pm n\varOmega $ (n = 0, 1, 2). The local light of BHD with frequency $\omega \pm n\varOmega $ is generated by the fiber intensity modulator and tailored by the mode cleaner. Here, we measure the correlation noise of side and frequency combs normalized to the shot noise limit relating to the phase of local oscillator beam, and we show the correlation noise of $\hat a_{\rm{i}}^{{\rm{out}}}$ and $\hat a_{\rm{s}}^{{\rm{out}}}$, the correlation noise of $\hat a_{{\rm{i}}, + \varOmega }^{{\rm{out}}}$ and $\hat a_{{\rm{s}}, - \varOmega }^{{\rm{out}}}$, the correlation noise of $\hat a_{{\rm{i}}, - \varOmega }^{{\rm{out}}}$ and $\hat a_{{\rm{s}}, + \varOmega }^{{\rm{out}}}$, the correlation noise of $\hat a_{{\rm{i}}, + 2\varOmega }^{{\rm{out}}}$ and $\hat a_{{\rm{s}}, - 2\varOmega }^{{\rm{out}}}$ and the correlation noise of $\hat a_{{\rm{i}}, - 2\varOmega }^{{\rm{out}}}$ and $\hat a_{{\rm{s}}, + 2\varOmega }^{{\rm{out}}}$. The experimental results show that the five pairs of entangled states with 4.5 dB entanglement are simultaneously produced by a type II OPO. Next, we can redesign NOPA to reduce its free spectral range and intracavity loss, and prepare local light with a high-order sideband frequency by fiber modulators with high bandwidth, it promises to obtain huge multiple bipartite entangled states. As a kind of extensible quantum information system, the frequency comb CV entanglement can be used to provide a necessary light source for realizing the experiment of frequency division multiplexing multi-channel teleportation, which lays a foundation for the future large-capacity quantum communication and network.
      通信作者: 刘奎, liukui@sxu.edu.cn
    • 基金项目: 国家级-国家自然科学基金(11674205)
      Corresponding author: Liu Kui, liukui@sxu.edu.cn
    [1]

    Furusawa A, Sorensen J L, Braustein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282 706Google Scholar

    [2]

    Raussendorfand R, Briegel H J 2001 Phys. Rev. Lett. 86 5188Google Scholar

    [3]

    Brida G, Genovese M, Berchera I R 2010 Nat. Photonics 4 227Google Scholar

    [4]

    D’Ambrosio V, Spagnolo N, Del Re L, Slussarenko S, Li Y, Kwek L C, Marrucci L, Walborn S P, Aolita L, Sciarrino F 2013 Nat. Commun. 4 2432Google Scholar

    [5]

    闫子华, 孙恒信, 蔡春晓, 马龙, 刘奎, 郜江瑞 2017 物理学报 66 114205Google Scholar

    Yan Z H, Sun H X, Cai C X, Ma L, Liu K, Gao J R 2017 Acta Phys. Sin. 66 114205Google Scholar

    [6]

    Ma L, Guo H, Liu K, Sun H X, Gao J R 2019 Opt. Express 27 35120Google Scholar

    [7]

    Lassen M, Delaubert V, Janousek J, Wagner K, Bachor H A, Lam P K, Treps N, Buchhave P, Fabre C, Harb C C 2007 Phys. Rev. Lett. 98 083602Google Scholar

    [8]

    Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H, Lloyd S 2012 Rev. Mod. Phys. 84 621Google Scholar

    [9]

    Liu K, Guo J, Cai C X, Guo S F, Gao J R 2014 Phys. Rev. Lett. 113 170501Google Scholar

    [10]

    Liu K, Guo J, Cai C X, Zhang J X, Gao J R 2016 Opt. Lett. 41 5178Google Scholar

    [11]

    Cai C X, Ma L, Li J, Guo H, L iu, Sun H X, Yang R G, Gao J G 2018 Photonics Res. 6 479Google Scholar

    [12]

    李娟, 李佳明, 蔡春晓, 孙恒信, 刘奎, 郜江瑞 2019 物理学报 68 034204Google Scholar

    Li J, Li J M, Cai C X, Sun H X, Liu K, Gao J R 2019 Acta Phys. Sin. 68 034204Google Scholar

    [13]

    Menicucci N C, Flammia S T, Pfister O 2008 Phys. Rev. Lett. 101 130501Google Scholar

    [14]

    Dunlop A E, Huntington E H 2006 Phys. Rev. A 73 013817Google Scholar

    [15]

    Heurs M, Webb J G, Dunlop A E, Harb C C, Ralph T C, Huntington E H 2010 Phys. Rev. A 81 032325Google Scholar

    [16]

    Pysher M, Miwa Y, Shahrokhshahi R, Bloomer R, Pfister O 2011 Phys. Rev. Lett. 107 030505Google Scholar

    [17]

    Chen M, Menicucci N C, Pfister O 2014 Phys. Rev. Lett. 112 120505Google Scholar

    [18]

    Pinel O, Jian P, Medeiros de Araújo R, Feng J X, Chalopin B, Fabre C, Treps N 2012 Phys. Rev. Lett. 108 083601Google Scholar

    [19]

    Roslund J, Medeiros de Araújo R, Jiang S, Fabre C, Treps N 2014 Nat. Photonics 8 109Google Scholar

    [20]

    Ra Y S, Dufour A, Walschaers M, Jacquard C, Michel T, Fabre C, Treps N 2019 Nat. Phys. 16 144

    [21]

    Yang R G, Zhang J, Zhai S Q, Liu K, Zhang J X, Gao J R 2013 J. Opt. Soc. Am. B 30 314Google Scholar

    [22]

    Song H B, Yonezawa H, Kuntz K B, Heurs M, Huntington E H 2014 Phys. Rev. A 90 042337

    [23]

    Duan L M, Giedke G, Cirac J I, Zoller P 2000 Phys. Rev. Lett. 84 2722Google Scholar

    [24]

    Simon R 2000 Phys. Rev. Lett. 84 2726Google Scholar

    [25]

    Yang R G, Zhang J, Zhai Z H, Zhai S Q, Liu K, Gao J R 2015 Opt. Express 23 021323Google Scholar

  • 图 1  光学频率梳

    Fig. 1.  Optical frequency combs.

    图 2  实验装置图(RF, 射频源; MC, 模式清洁器; PZT, 压电陶瓷; HWP, 半波片; PBS, 偏振分光棱镜; BHD, 平衡零拍系统; SA, 频谱分析仪; EOM, 光纤强度调制器)

    Fig. 2.  Experimental setup. RF, radio-frequency signal generator; MC, mode cleaner; PZT, piezoelectric transducer; HWP, half wave plate; PBS, polarizing beam splitter; BHD, balanced homodyne detector; SA, spectrum analyzer; EOM, fiber intensity modulator.

    图 3  不同频率梳边带处的关联噪声随本地光相位变化的归一化噪声功率曲线(其中蓝线为散粒噪声基准, 绿线为关联噪声谱) (a)$\hat a_{\rm{i}}^{{\rm{out}}}$$\hat a_{\rm{s}}^{{\rm{out}}}$的关联测量结果; (b)$\hat a_{{\rm{i, }} + \varOmega }^{{\rm{out}}}$$\hat a_{{\rm{s}}, - \varOmega }^{{\rm{out}}}$的关联测量结果; (c)$\hat a_{{\rm{i}}, - \varOmega }^{{\rm{out}}}$$\hat a_{{\rm{s}}, + \varOmega }^{{\rm{out}}}$的关联测量结果; (d)$\hat a_{{\rm{i, }} + 2\varOmega }^{{\rm{out}}}$$\hat a_{{\rm{s}}, - 2\varOmega }^{{\rm{out}}}$的关联测量结果; (e)$\hat a_{{\rm{i}}, - 2\varOmega }^{{\rm{out}}}$$\hat a_{{\rm{s}}, + 2\varOmega }^{{\rm{out}}}$的关联测量结果; 谱仪的分析频率为3 MHz, 分辨率带宽为300 kHz, 视频带宽为1 kHz

    Fig. 3.  The correlation noise of sideband frequency combs normalized to the shot noise limit depending on the phase of local oscilla-tor beam (the blue light is shot noise limit, the green light is correlation noise): (a) The correlation noise of $\hat a_{\rm{i}}^{{\rm{out}}}$ and $\hat a_{\rm{s}}^{{\rm{out}}}$; (b) the correlation noise of $\hat a_{{\rm{i, }} + \varOmega }^{{\rm{out}}}$ and $\hat a_{{\rm{s}}, - \varOmega }^{{\rm{out}}}$; (c) the correlation noise of $\hat a_{{\rm{i}}, - \varOmega }^{{\rm{out}}}$ and$\hat a_{{\rm{s}}, + \varOmega }^{{\rm{out}}}$; (d) the correlation noise of $\hat a_{{\rm{i, }} + 2\varOmega }^{{\rm{out}}}$ and $\hat a_{{\rm{s}}, - 2\varOmega }^{{\rm{out}}}$; (e) the correlation noise of $\hat a_{{\rm{i}}, - 2\varOmega }^{{\rm{out}}}$ and $\hat a_{{\rm{s}}, + 2\varOmega }^{{\rm{out}}}$. The analysis frequency of 3 MHz with resolution bandwidth of 300 kHz and video bandwidth of 1 kHz.

  • [1]

    Furusawa A, Sorensen J L, Braustein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282 706Google Scholar

    [2]

    Raussendorfand R, Briegel H J 2001 Phys. Rev. Lett. 86 5188Google Scholar

    [3]

    Brida G, Genovese M, Berchera I R 2010 Nat. Photonics 4 227Google Scholar

    [4]

    D’Ambrosio V, Spagnolo N, Del Re L, Slussarenko S, Li Y, Kwek L C, Marrucci L, Walborn S P, Aolita L, Sciarrino F 2013 Nat. Commun. 4 2432Google Scholar

    [5]

    闫子华, 孙恒信, 蔡春晓, 马龙, 刘奎, 郜江瑞 2017 物理学报 66 114205Google Scholar

    Yan Z H, Sun H X, Cai C X, Ma L, Liu K, Gao J R 2017 Acta Phys. Sin. 66 114205Google Scholar

    [6]

    Ma L, Guo H, Liu K, Sun H X, Gao J R 2019 Opt. Express 27 35120Google Scholar

    [7]

    Lassen M, Delaubert V, Janousek J, Wagner K, Bachor H A, Lam P K, Treps N, Buchhave P, Fabre C, Harb C C 2007 Phys. Rev. Lett. 98 083602Google Scholar

    [8]

    Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H, Lloyd S 2012 Rev. Mod. Phys. 84 621Google Scholar

    [9]

    Liu K, Guo J, Cai C X, Guo S F, Gao J R 2014 Phys. Rev. Lett. 113 170501Google Scholar

    [10]

    Liu K, Guo J, Cai C X, Zhang J X, Gao J R 2016 Opt. Lett. 41 5178Google Scholar

    [11]

    Cai C X, Ma L, Li J, Guo H, L iu, Sun H X, Yang R G, Gao J G 2018 Photonics Res. 6 479Google Scholar

    [12]

    李娟, 李佳明, 蔡春晓, 孙恒信, 刘奎, 郜江瑞 2019 物理学报 68 034204Google Scholar

    Li J, Li J M, Cai C X, Sun H X, Liu K, Gao J R 2019 Acta Phys. Sin. 68 034204Google Scholar

    [13]

    Menicucci N C, Flammia S T, Pfister O 2008 Phys. Rev. Lett. 101 130501Google Scholar

    [14]

    Dunlop A E, Huntington E H 2006 Phys. Rev. A 73 013817Google Scholar

    [15]

    Heurs M, Webb J G, Dunlop A E, Harb C C, Ralph T C, Huntington E H 2010 Phys. Rev. A 81 032325Google Scholar

    [16]

    Pysher M, Miwa Y, Shahrokhshahi R, Bloomer R, Pfister O 2011 Phys. Rev. Lett. 107 030505Google Scholar

    [17]

    Chen M, Menicucci N C, Pfister O 2014 Phys. Rev. Lett. 112 120505Google Scholar

    [18]

    Pinel O, Jian P, Medeiros de Araújo R, Feng J X, Chalopin B, Fabre C, Treps N 2012 Phys. Rev. Lett. 108 083601Google Scholar

    [19]

    Roslund J, Medeiros de Araújo R, Jiang S, Fabre C, Treps N 2014 Nat. Photonics 8 109Google Scholar

    [20]

    Ra Y S, Dufour A, Walschaers M, Jacquard C, Michel T, Fabre C, Treps N 2019 Nat. Phys. 16 144

    [21]

    Yang R G, Zhang J, Zhai S Q, Liu K, Zhang J X, Gao J R 2013 J. Opt. Soc. Am. B 30 314Google Scholar

    [22]

    Song H B, Yonezawa H, Kuntz K B, Heurs M, Huntington E H 2014 Phys. Rev. A 90 042337

    [23]

    Duan L M, Giedke G, Cirac J I, Zoller P 2000 Phys. Rev. Lett. 84 2722Google Scholar

    [24]

    Simon R 2000 Phys. Rev. Lett. 84 2726Google Scholar

    [25]

    Yang R G, Zhang J, Zhai Z H, Zhai S Q, Liu K, Gao J R 2015 Opt. Express 23 021323Google Scholar

  • [1] 李靖, 刘运全. 基于相对论自由电子的量子物理. 物理学报, 2022, 71(23): 233302. doi: 10.7498/aps.71.20221289
    [2] 李娟, 李佳明, 蔡春晓, 孙恒信, 刘奎, 郜江瑞. 优化抽运空间分布实现连续变量超纠缠的纠缠增强. 物理学报, 2019, 68(3): 034204. doi: 10.7498/aps.68.20181625
    [3] 赵士平, 刘玉玺, 郑东宁. 新型超导量子比特及量子物理问题的研究. 物理学报, 2018, 67(22): 228501. doi: 10.7498/aps.67.20180845
    [4] 万振菊, 冯晋霞, 成健, 张宽收. 连续变量纠缠态光场在光纤中传输特性的实验研究. 物理学报, 2018, 67(2): 024203. doi: 10.7498/aps.67.20171542
    [5] 马亚云, 冯晋霞, 万振菊, 高英豪, 张宽收. 连续变量1.34 m量子纠缠态光场的实验制备. 物理学报, 2017, 66(24): 244205. doi: 10.7498/aps.66.244205
    [6] 卢道明. 腔量子电动力学系统中耦合三原子的纠缠特性. 物理学报, 2014, 63(6): 060301. doi: 10.7498/aps.63.060301
    [7] 严晓波, 杨柳, 田雪冬, 刘一谋, 张岩. 参量放大器腔中光力诱导透明与本征模劈裂性质. 物理学报, 2014, 63(20): 204201. doi: 10.7498/aps.63.204201
    [8] 卢道明. 弱相干场耦合腔系统中的纠缠特性. 物理学报, 2013, 62(3): 030302. doi: 10.7498/aps.62.030302
    [9] 卢道明. 三参数双模压缩粒子数态的量子特性. 物理学报, 2012, 61(21): 210302. doi: 10.7498/aps.61.210302
    [10] 卢道明. 三能级原子与耦合腔相互作用系统中的纠缠特性. 物理学报, 2012, 61(3): 030301. doi: 10.7498/aps.61.030301
    [11] 卢道明. 耦合腔系统中的三体纠缠演化. 物理学报, 2012, 61(18): 180301. doi: 10.7498/aps.61.180301
    [12] 卢道明. 三个耦合腔系统中的纠缠特性. 物理学报, 2012, 61(15): 150303. doi: 10.7498/aps.61.150303
    [13] 卢道明. 型和V型三能级原子与耦合腔相互作用系统中的纠缠特性. 物理学报, 2011, 60(12): 120303. doi: 10.7498/aps.60.120303
    [14] 卢道明. 原子与耦合腔相互作用系统中的纠缠特性. 物理学报, 2011, 60(9): 090302. doi: 10.7498/aps.60.090302
    [15] 卢道明. 腔外原子操作控制腔内原子的纠缠特性. 物理学报, 2010, 59(12): 8359-8364. doi: 10.7498/aps.59.8359
    [16] 赵超樱, 谭维翰. 色散效应对光学参量放大器量子起伏特性的影响. 物理学报, 2010, 59(4): 2498-2504. doi: 10.7498/aps.59.2498
    [17] 张英杰, 夏云杰, 任廷琦, 杜秀梅, 刘玉玲. 反Jaynes-Cummings模型下纠缠相干光场量子特性的研究. 物理学报, 2009, 58(2): 722-728. doi: 10.7498/aps.58.722
    [18] 林继成, 郑小虎, 曹卓良. Kerr介质中双模纠缠相干光与Bell态原子相互作用系统的原子偶极压缩. 物理学报, 2007, 56(2): 837-844. doi: 10.7498/aps.56.837
    [19] 江金环, 王永龙, 李子平. 稳态光折变空间孤子传输的量子理论. 物理学报, 2004, 53(12): 4070-4074. doi: 10.7498/aps.53.4070
    [20] 王丹翎, 龚旗煌, 汪凯戈, 杨国健. 光学简并参量振荡中的量子非破坏性测量. 物理学报, 2000, 49(8): 1484-1489. doi: 10.7498/aps.49.1484
计量
  • 文章访问数:  5909
  • PDF下载量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-15
  • 修回日期:  2020-03-31
  • 刊出日期:  2020-06-20

/

返回文章
返回