搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

射频/直流驱动大气压氩气介质阻挡放电的一维仿真研究

齐兵 田晓 王静 王屹山 司金海 汤洁

引用本文:
Citation:

射频/直流驱动大气压氩气介质阻挡放电的一维仿真研究

齐兵, 田晓, 王静, 王屹山, 司金海, 汤洁

One-dimensional simulation of Ar dielectric barrier discharge driven by combined rf/dc sources at atmospheric pressure

Qi Bing, Tian Xiao, Wang Jing, Wang Yi-Shan, Si Jin-Hai, Tang Jie
PDF
HTML
导出引用
  • 采用一维自洽耦合流体模型理论研究了射频(rf)/直流(dc)驱动大气压氩气(Ar)介质阻挡放电特性, 仿真得到了不同直流电压下, 射频最小维持放电电压变化情况、周期平均电子密度平均值随周期平均气体电压平均值变化情况、电子产生率及电子密度的时空分布. 分析表明: 直流电压通过改变介质表面电荷密度来影响气隙电压, 从而控制放电过程. 直流电压较小时放电被抑制, 直流电压较大时放电得以恢复. 随着直流电压的增大, 射频最小维持放电电压振幅随之呈现先增大后减小的变化趋势. 另外, 当射频电压振幅高于最小维持放电电压振幅时, 射频电源驱动与射频/直流驱动时的气隙电压相同, 射频电源控制放电. 进一步发现在$ \alpha $模式下, 随着直流电压的增大, 鞘层逐渐形成, 电子产生区域从接地电极附近转变为两侧鞘层和主等离子体区边界处; 在$ \gamma $模式下, 当射频电压振幅高于最小维持放电电压振幅时, 电子产生和分布不受直流电压影响.
    We present the dielectric barrier discharge (DBD) mechanism of argon (Ar) plasma driven by a combination of radio frequency (rf) voltage source and direct current (dc) voltage source at atmospheric pressure, based on one-dimensional self-consistent coupled fluid model. Using the finite element method (FEM) to numerically calculate the model, the average value of period average electron density varying with the average value of period average gas voltage in one rf period, and the variation of the minimum rf sustaining voltage are obtained under different dc voltages. In addition, the spatiotemporal distribution of the electron density and electron generation rate, the spatial distribution of electron temperature, and the time-domain variation of electron conduction current flowing to the dielectric are studied. The results show that the introduction of the dc voltage source has a significant effect on the rf discharge process of atmospheric pressure Ar gas, and the parameters of the plasma state are changed correspondingly. The discharge process is mainly controlled by the air gap voltage, and the dc voltage affects the gap voltage by changing the charge density on the dielectric surface. The minimum rf sustaining voltage Vrf,min first increases and then decreases with the increase of dc voltage. The amplitude of rf minimum sustaining discharge voltage is changed by the dc voltage. And when the amplitude is reached or exceeded, the discharge is controlled by the rf power supply.On the one hand, in the α mode, when the dc voltage is low, electrons are generated near the ground electrode. The electric field intensity in the ionization area is too small to maintain ionization. When the dc voltage is high, the sheath is formed, and electrons are generated near the rf sheaths on both sides and the boundary of the plasma region. In the γ mode, when the rf voltage amplitude is equal to or greater than the rf minimum sustain discharge voltage amplitude, i.e. Vrf Vrf,min, the generation and distribution of electrons are almost unaffected by the dc voltage.On the other hand, in the α mode, the ionization cannot be sustained for the low dc voltage, resulting in the failure to form the main plasma area. Therefore, the electron temperature is generally high. Owing to the high electron density near the ground electrode, the electron temperature is higher. The electron density near the dielectric is less than that near the electrode, so the temperature is lower. When the dc voltage is getting larger, the sheath and the main plasma region are formed. The dc voltage significantly affects the electron temperature by controlling the sheath voltage and the length of the main plasma region.Finally, in the α mode, the electron density near the medium is very low and the air gap voltage is negative for the low dc voltage. As a result, few electrons can reach the surface of the dielectric, and the conduction current of electrons flowing to the medium is very small. With the increase of the dc voltage, the electric field across air gap increases, and electrons, under the action of the electric field, flow from the dielectric surface. The sheath having formed, some speedy non-localization electrons that have reached the dielectric surface are reflected back to the sheath, resulting in a significant reduction in the number of electrons that can reach the dielectric surface.
      通信作者: 汤洁, tangjie@opt.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 51877210, 52177166)、陕西省自然科学基金(批准号: 2020JM-309)、中国科学院光谱成像技术重点实验室开放项目(批准号: LSIT201807G)、陕西省自然科学基础研究计划(批准号: 2019JCW-03)、西安光机所关键部署研究计划(批准号: S19-020-III)和中国科学院重大科技基础设施预研项目(批准号: J20-021-III)资助的课题.
      Corresponding author: Tang Jie, tangjie@opt.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51877210, 52177166), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2020JM-309), the Open Research Fund of Key Laboratory of Spectral Imaging Technology, Chinese Academy of Sciences (Grant No. LSIT201807G), the Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2019JCW-03), the Key Deployment Research Program of XIOPM, China (Grant No. S19-020-III), and the Major Science and Technology Infrastructure Pre-research Program of Chinese Academy of Sciences, China (Grant No. J20-021-III).
    [1]

    高书涵, 王绪成, 张远涛 2020 物理学报 69 115204Google Scholar

    Gao S H, Wang X C, Zhang Y T 2020 Acta Phys. Sin. 69 115204Google Scholar

    [2]

    Wang J, Lei B Y, Xu Y G, Wang Y S, Tang J, Zhao W, Duan Y X 2020 Phys. Plasmas 27 043501Google Scholar

    [3]

    Tang J, Duan Y X, Zhao W 2010 Appl. Phys. Lett. 96 191503Google Scholar

    [4]

    孔德霖, 杨冰彦, 何锋, 韩若愚, 缪劲松, 宋廷鲁, 欧阳吉庭 2021 物理学报 70 095205Google Scholar

    Kong D L, Yang B Y, He F, Han R Y, Miao J S, Song Y L, Ouyang J T 2021 Acta Phys. Sin. 70 095205Google Scholar

    [5]

    Zhang S, Gao Y, Sun H, Bai H, Wang R X, Shao T 2018 J. Phys. D: Appl. Phys. 51 274005Google Scholar

    [6]

    Shao T, Liu F, Hai B, Ma Y F, Wang R X, Ren C Y 2017 IEEE Trans. Dielectr. Electr. Insul. 24 1557Google Scholar

    [7]

    Inglezakis V J, Amzebek A, Kuspangaliyeva B, Sarbassov Y, Balbayeva G, Yerkinova A, Poulopoulos S G 2018 Desalin. Water Treat. 112 218Google Scholar

    [8]

    Xiong Z, Lu X, Cao Y, Ning Q, Ostrikov, Lu Y, Zhou X, Liu J 2011 Appl. Phys. Lett. 99 253703Google Scholar

    [9]

    万海容, 郝艳捧, 房强, 苏恒炜, 阳林, 李立浧 2020 物理学报 69 145203Google Scholar

    Wan H R, Hao Y P, Fang Q, Su H W, Yang L, Li L C 2020 Acta Phys. Sin. 69 145203Google Scholar

    [10]

    Kohler K, Coburn J W, Horne D E, Kay E, Keller J H 1985 J. Appl. Phys. 57 59Google Scholar

    [11]

    Tian X B, Li J, Tian L, Gong C Z, Yang S Q, Chu K 2011 Surf. Coat. Technol. 206 1016Google Scholar

    [12]

    Oyanagi Y, Hibino Y, Sawamoto N, Wakabayashi H, Ogura A 2020 Jpn. J. Appl. Phys. 59 065502Google Scholar

    [13]

    Li H X, Xu T, Chen J M, Zhou H D, Liu H W 2004 Appl. Surf. Sci. 227 364Google Scholar

    [14]

    解艳凤, 施芸城, 黄晓江, 石建军, 郭颖 2013 真空科学与技术学报 33 893

    Xie Y F, Shi Y C, Huang X J, Shi J J, Guo Y 2013 Chin. J. Vac. Sci. Technol. 33 893

    [15]

    张权治 2014 博士学位论文 (大连: 大连理工大学)

    Zhang Q Z 2014 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese)

    [16]

    Diomede P, Longo S, Economou D J, Capitelli M 2012 J. Phys. D: Appl. Phys. 45 175204Google Scholar

    [17]

    Radmilović-Radjenović M, Radjenović B 2006 Plasma Sources Sci. Technol. 15 1Google Scholar

    [18]

    Kawamura E, Lieberman M A, Lichtenberg A J 2007 J. Vac. Sci. Technol. , A 25 1456Google Scholar

    [19]

    Wang S, Xu X, Wang Y N 2012 Plasma Sci. Technol. 14 32Google Scholar

    [20]

    Kawajiri K, Ramachandran K, Nishiyama H 2005 Int. J. Heat. Mass Transfer 48 183Google Scholar

    [21]

    罗海云, 冉俊霞, 王新新 2012 高电压技术 38 1070

    Luo H Y, Ran J X, Wang X X 2012 High Voltage Eng. 38 1070

    [22]

    张增辉, 邵先军, 张冠军, 李娅西, 彭兆裕 2012 物理学报 61 045205Google Scholar

    Zhang Z H, Shao X J, Zhang G J, Li Y X, Peng Z Y 2012 Acta Phys. Sin. 61 045205Google Scholar

    [23]

    胡艳婷, 张钰如, 宋远红, 王友年 2018 物理学报 67 225203Google Scholar

    Hu Y T, Zhang Y R, Song Y H, Wang Y N 2018 Acta Phys. Sin. 67 225203Google Scholar

    [24]

    Balcon N, Hagelaar G J M, Boeuf J P 2008 IEEE Trans. Plasma Sci. 36 2782Google Scholar

    [25]

    Ballah Z, Khelfaoui F 2020 J. King. Saud. Univ. Sci. 32 620Google Scholar

    [26]

    Dyatko N A, Ionikh Y Z, Kochetov I V, Marinov D L, Meshchanov A V, Napartovich A P, Petrov F B, Starostin S A 2008 J. Phys. D: Appl. Phys. 41 055204Google Scholar

    [27]

    Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722Google Scholar

    [28]

    Min B, Lee S H, Park H G 2000 J. Vac. Sci. Technol. A 18 349Google Scholar

    [29]

    Makabe T, Petrovic Z 2014 Plasma Electronics: Applications in Microelectronic Device Fabrication Second Edition (New York and London: Taylor & Francis Group) pp268–269

    [30]

    Lisovsikiy V A, Kharchenko N D, Yegorenkov V D 2008 J. Phys. D: Appl. Phys. 41 125207Google Scholar

    [31]

    E E Kunhardt 2000 IEEE Trans. Plasma Sci. 28 189Google Scholar

    [32]

    Tarnev K, Pavlova R 2019 J. Plasma Phys. 85 905850201Google Scholar

    [33]

    Brenning N, Gudmundsson J T, Lundin D, Minea T, Raadu M A, Helmersson U 2016 Plasma Sources Sci. Technol. 25 065024Google Scholar

    [34]

    Lieberman M A, Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (New York: Wiley-Interscience Press) pp360–362

    [35]

    Balcon N, Aanesland A, Boswell R W 2007 Plasma Sources Sci. Technol. 16 217Google Scholar

    [36]

    Wei J, Xiang X, Zhong L D, Wang Y N 2008 Phys. Plasmas 15 033502Google Scholar

  • 图 1  (a) 放电模型结构; (b) 径向网格剖分图

    Fig. 1.  (a) Structure diagram of discharge model; (b) radial meshing diagram.

    图 2  (a)—(k) DBD放电参数时域波形; (l) 射频最小维持放电电压振幅随直流电压的变化曲线

    Fig. 2.  (a)–(k) Time domain waveform of DBD discharge parameters; (l) variation of rf minimum sustaining discharge voltage amplitude with dc voltage.

    图 3  不同直流电压下, 周期平均电子密度平均值随周期平均气体电压平均值的变化 (a) 0 V; (b) –100 V; (c) –200 V; (d) –300 V; (e) –400 V; (f) –500 V; (g) 0— –500 V

    Fig. 3.  Average value of period average electron density varying with the average value of period average gas voltage with different voltage: (a) 0 V; (b) –100 V; (c) –200 V; (d) –300 V; (e) –400 V; (f) –500 V; (g) 0− –500 V.

    图 4  Vrf = 55 V条件下, 直流电压为(a) 0, (b) –100, (c) –200, (d) –300, (e) –400和(f) –500 V时, 电子产生率时空分布; (g) 周期平均电子密度径向分布

    Fig. 4.  Under the condition of Vrf = 55 V, spatial-temporal distribution of electron generation rate at different dc voltage of (a) 0, (b) –100, (c) –200, (d) –300, (e) –400 and (f) –500 V; (g) radial distribution of period average electron density.

    图 5  Vrf = 500 V条件下, 直流电压分别为(a) 0, (b) –100, (c) –200, (d) –300, (e) –400和(f) –500 V时, 电子产生率时空分布;(g) 周期平均电子密度径向分布

    Fig. 5.  Under the condition of Vrf = 500 V, spatial-temporal distribution of electron generation rate with dc voltage of (a) 0, (b) –100, (c) –200, (d) –300, (e) –400 and (f) –500 V; (g) radial distribution of period average electron density.

    图 6  不同直流电压下, 周期平均电子温度径向分布(Vrf = 55 V)

    Fig. 6.  Radial distribution of the period average electron temperature with different dc voltages (Vrf = 55 V).

    图 7  Vrf = 55 V时, 不同直流电压下, (a)流向介质表面的电子传导电流密度; (b) 周期平均气体电压径向分布

    Fig. 7.  Under different dc voltage and Vrf = 55 V, (a) electron conduction current density on dielectric surface; (b) radial distribution of period average gas voltage.

    表 1  本文放电模型中所涉及的化学反应

    Table 1.  Chemical reaction formulas used in the discharge model.

    反应方程反应系数
    ${\text{e + Ar} } \to {\text{2e + A} }{ {\text{r} }^{\text{ + } } }$BOLSIG+
    $ {\text{e + Ar}} \to {\text{e + A}}{{\text{r}}^{\text{*}}} $BOLSIG+
    ${\rm{e}} + {\rm{A}}{{\rm{r}}^*} \to 2 {\rm{e}} + {\rm{A}}{{\rm{r}}^ + }$BOLSIG+
    $2 {\rm{A}}{{\rm{r}}^*} \to {\rm{e}} + {\rm{A}}{{\rm{r}}^ + } + {\rm{Ar}}$1.2×10–9×NA cm3·s–1
    ${\rm{A}}{{\rm{r}}^ + } + 2 {\rm{Ar}} \to {\rm{Ar}}_2^ + + {\rm{Ar}}$2.5×10–31×$ N_{\rm A}^2 $ cm6·s–1
    ${\rm{e}} + {\rm{Ar}}_2^ + \to {\rm{A}}{{\rm{r}}^*} + {\rm{Ar}}$7×10–7×(300/Te×11600)1/2×NA
    cm3·s–1
    ${\rm{A} }{ {\rm{r} }^*} \to {\rm{Ar} } + {{h} }\nu$5×105 s–1
    ${\rm{e}} + {\rm{Ar}} \to {\rm{e}} + {\rm{Ar}}$BOLSIG+
    下载: 导出CSV
  • [1]

    高书涵, 王绪成, 张远涛 2020 物理学报 69 115204Google Scholar

    Gao S H, Wang X C, Zhang Y T 2020 Acta Phys. Sin. 69 115204Google Scholar

    [2]

    Wang J, Lei B Y, Xu Y G, Wang Y S, Tang J, Zhao W, Duan Y X 2020 Phys. Plasmas 27 043501Google Scholar

    [3]

    Tang J, Duan Y X, Zhao W 2010 Appl. Phys. Lett. 96 191503Google Scholar

    [4]

    孔德霖, 杨冰彦, 何锋, 韩若愚, 缪劲松, 宋廷鲁, 欧阳吉庭 2021 物理学报 70 095205Google Scholar

    Kong D L, Yang B Y, He F, Han R Y, Miao J S, Song Y L, Ouyang J T 2021 Acta Phys. Sin. 70 095205Google Scholar

    [5]

    Zhang S, Gao Y, Sun H, Bai H, Wang R X, Shao T 2018 J. Phys. D: Appl. Phys. 51 274005Google Scholar

    [6]

    Shao T, Liu F, Hai B, Ma Y F, Wang R X, Ren C Y 2017 IEEE Trans. Dielectr. Electr. Insul. 24 1557Google Scholar

    [7]

    Inglezakis V J, Amzebek A, Kuspangaliyeva B, Sarbassov Y, Balbayeva G, Yerkinova A, Poulopoulos S G 2018 Desalin. Water Treat. 112 218Google Scholar

    [8]

    Xiong Z, Lu X, Cao Y, Ning Q, Ostrikov, Lu Y, Zhou X, Liu J 2011 Appl. Phys. Lett. 99 253703Google Scholar

    [9]

    万海容, 郝艳捧, 房强, 苏恒炜, 阳林, 李立浧 2020 物理学报 69 145203Google Scholar

    Wan H R, Hao Y P, Fang Q, Su H W, Yang L, Li L C 2020 Acta Phys. Sin. 69 145203Google Scholar

    [10]

    Kohler K, Coburn J W, Horne D E, Kay E, Keller J H 1985 J. Appl. Phys. 57 59Google Scholar

    [11]

    Tian X B, Li J, Tian L, Gong C Z, Yang S Q, Chu K 2011 Surf. Coat. Technol. 206 1016Google Scholar

    [12]

    Oyanagi Y, Hibino Y, Sawamoto N, Wakabayashi H, Ogura A 2020 Jpn. J. Appl. Phys. 59 065502Google Scholar

    [13]

    Li H X, Xu T, Chen J M, Zhou H D, Liu H W 2004 Appl. Surf. Sci. 227 364Google Scholar

    [14]

    解艳凤, 施芸城, 黄晓江, 石建军, 郭颖 2013 真空科学与技术学报 33 893

    Xie Y F, Shi Y C, Huang X J, Shi J J, Guo Y 2013 Chin. J. Vac. Sci. Technol. 33 893

    [15]

    张权治 2014 博士学位论文 (大连: 大连理工大学)

    Zhang Q Z 2014 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese)

    [16]

    Diomede P, Longo S, Economou D J, Capitelli M 2012 J. Phys. D: Appl. Phys. 45 175204Google Scholar

    [17]

    Radmilović-Radjenović M, Radjenović B 2006 Plasma Sources Sci. Technol. 15 1Google Scholar

    [18]

    Kawamura E, Lieberman M A, Lichtenberg A J 2007 J. Vac. Sci. Technol. , A 25 1456Google Scholar

    [19]

    Wang S, Xu X, Wang Y N 2012 Plasma Sci. Technol. 14 32Google Scholar

    [20]

    Kawajiri K, Ramachandran K, Nishiyama H 2005 Int. J. Heat. Mass Transfer 48 183Google Scholar

    [21]

    罗海云, 冉俊霞, 王新新 2012 高电压技术 38 1070

    Luo H Y, Ran J X, Wang X X 2012 High Voltage Eng. 38 1070

    [22]

    张增辉, 邵先军, 张冠军, 李娅西, 彭兆裕 2012 物理学报 61 045205Google Scholar

    Zhang Z H, Shao X J, Zhang G J, Li Y X, Peng Z Y 2012 Acta Phys. Sin. 61 045205Google Scholar

    [23]

    胡艳婷, 张钰如, 宋远红, 王友年 2018 物理学报 67 225203Google Scholar

    Hu Y T, Zhang Y R, Song Y H, Wang Y N 2018 Acta Phys. Sin. 67 225203Google Scholar

    [24]

    Balcon N, Hagelaar G J M, Boeuf J P 2008 IEEE Trans. Plasma Sci. 36 2782Google Scholar

    [25]

    Ballah Z, Khelfaoui F 2020 J. King. Saud. Univ. Sci. 32 620Google Scholar

    [26]

    Dyatko N A, Ionikh Y Z, Kochetov I V, Marinov D L, Meshchanov A V, Napartovich A P, Petrov F B, Starostin S A 2008 J. Phys. D: Appl. Phys. 41 055204Google Scholar

    [27]

    Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722Google Scholar

    [28]

    Min B, Lee S H, Park H G 2000 J. Vac. Sci. Technol. A 18 349Google Scholar

    [29]

    Makabe T, Petrovic Z 2014 Plasma Electronics: Applications in Microelectronic Device Fabrication Second Edition (New York and London: Taylor & Francis Group) pp268–269

    [30]

    Lisovsikiy V A, Kharchenko N D, Yegorenkov V D 2008 J. Phys. D: Appl. Phys. 41 125207Google Scholar

    [31]

    E E Kunhardt 2000 IEEE Trans. Plasma Sci. 28 189Google Scholar

    [32]

    Tarnev K, Pavlova R 2019 J. Plasma Phys. 85 905850201Google Scholar

    [33]

    Brenning N, Gudmundsson J T, Lundin D, Minea T, Raadu M A, Helmersson U 2016 Plasma Sources Sci. Technol. 25 065024Google Scholar

    [34]

    Lieberman M A, Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (New York: Wiley-Interscience Press) pp360–362

    [35]

    Balcon N, Aanesland A, Boswell R W 2007 Plasma Sources Sci. Technol. 16 217Google Scholar

    [36]

    Wei J, Xiang X, Zhong L D, Wang Y N 2008 Phys. Plasmas 15 033502Google Scholar

  • [1] 刘在浩, 刘颖华, 许博坪, 尹培琪, 李静, 王屹山, 赵卫, 段忆翔, 汤洁. 大气压氦气预电离直流辉光放电二维仿真研究. 物理学报, 2024, 73(1): 015101. doi: 10.7498/aps.73.20230712
    [2] 赵立芬, 哈静, 王非凡, 李庆, 何寿杰. 氧气空心阴极放电模拟. 物理学报, 2022, 71(2): 025201. doi: 10.7498/aps.71.20211150
    [3] 艾飞, 刘志兵, 张远涛. 结合机器学习的大气压介质阻挡放电数值模拟研究. 物理学报, 2022, 71(24): 245201. doi: 10.7498/aps.71.20221555
    [4] 王倩, 赵江山, 范元媛, 郭馨, 周翊. 不同缓冲气体中ArF准分子激光系统放电特性分析. 物理学报, 2020, 69(17): 174207. doi: 10.7498/aps.69.20200087
    [5] 何寿杰, 周佳, 渠宇霄, 张宝铭, 张雅, 李庆. 氩气空心阴极放电复杂动力学过程的模拟研究. 物理学报, 2019, 68(21): 215101. doi: 10.7498/aps.68.20190734
    [6] 何寿杰, 张钊, 赵雪娜, 李庆. 微空心阴极维持辉光放电的时空特性. 物理学报, 2017, 66(5): 055101. doi: 10.7498/aps.66.055101
    [7] 卢琪, 吕宏鸣, 伍晓明, 吴华强, 钱鹤. 石墨烯射频器件研究进展. 物理学报, 2017, 66(21): 218502. doi: 10.7498/aps.66.218502
    [8] 姚聪伟, 马恒驰, 常正实, 李平, 穆海宝, 张冠军. 大气压介质阻挡辉光放电脉冲的阴极位降区特性及其影响因素的数值仿真. 物理学报, 2017, 66(2): 025203. doi: 10.7498/aps.66.025203
    [9] 李元, 穆海宝, 邓军波, 张冠军, 王曙鸿. 正极性纳秒脉冲电压下变压器油中流注放电仿真研究. 物理学报, 2013, 62(12): 124703. doi: 10.7498/aps.62.124703
    [10] 张增辉, 邵先军, 张冠军, 李娅西, 彭兆裕. 大气压氩气介质阻挡辉光放电的一维仿真研究. 物理学报, 2012, 61(4): 045205. doi: 10.7498/aps.61.045205
    [11] 张增辉, 张冠军, 邵先军, 常正实, 彭兆裕, 许昊. 大气压Ar/NH3介质阻挡辉光放电的仿真研究. 物理学报, 2012, 61(24): 245205. doi: 10.7498/aps.61.245205
    [12] 邵先军, 马跃, 李娅西, 张冠军. 低气压氙气介质阻挡放电的一维仿真研究. 物理学报, 2010, 59(12): 8747-8754. doi: 10.7498/aps.59.8747
    [13] 邹秀, 邹滨雁, 刘惠平. 外加磁场对碰撞射频鞘层离子能量分布的影响. 物理学报, 2009, 58(9): 6392-6396. doi: 10.7498/aps.58.6392
    [14] 赵国伟, 王之江, 徐跃民, 粱志伟, 徐 杰. 射频激励等离子体非线性效应的FDTD数值模拟. 物理学报, 2007, 56(9): 5304-5308. doi: 10.7498/aps.56.5304
    [15] 裘 亮, 孟月东, 任兆杏, 钟少锋. 一种新型微空阴极结构的大气压射频冷等离子体源. 物理学报, 2006, 55(11): 5872-5877. doi: 10.7498/aps.55.5872
    [16] 董丽芳, 毛志国, 冉俊霞. 氩气介质阻挡放电不同放电模式的电学特性研究. 物理学报, 2005, 54(7): 3268-3272. doi: 10.7498/aps.54.3268
    [17] 周俐娜, 王新兵. 微空心阴极放电的流体模型模拟. 物理学报, 2004, 53(10): 3440-3446. doi: 10.7498/aps.53.3440
    [18] 尹增谦, 王 龙, 董丽芳, 李雪辰, 柴志方. 介质阻挡放电中微放电的映射方程. 物理学报, 2003, 52(4): 929-934. doi: 10.7498/aps.52.929
    [19] 杨林安, 张义门, 龚仁喜, 张玉明. 4H-SiC射频功率MESFET的自热效应分析. 物理学报, 2002, 51(1): 148-152. doi: 10.7498/aps.51.148
    [20] 戴忠玲, 王友年, 马腾才. 射频等离子体鞘层动力学模型. 物理学报, 2001, 50(12): 2398-2402. doi: 10.7498/aps.50.2398
计量
  • 文章访问数:  4236
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-08
  • 修回日期:  2022-08-30
  • 上网日期:  2022-12-08
  • 刊出日期:  2022-12-24

/

返回文章
返回