搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气压空气中纳秒脉冲弥散放电的边界范围敏感性:基于轴对称流体模型的仿真分析

郭雨林 张雅琪 朱益飞 孙安邦 Pierre Tardiveau

引用本文:
Citation:

大气压空气中纳秒脉冲弥散放电的边界范围敏感性:基于轴对称流体模型的仿真分析

郭雨林, 张雅琪, 朱益飞, 孙安邦, Pierre Tardiveau

Boundary Range Sensitivity of Nanosecond Pulsed Diffuse Discharges in Atmospheric Air: A Simulation Study via Axisymmetric Fluid Model

YULIN Guo, YAQI Zhang, YIFEI Zhu, ANBANG Sun, PIERRE Tardiveau
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 本文基于流体模型,探讨了大气压空气中快纳秒脉冲上升沿引发的弥散放电对等离子体计算域边界与泊松方程计算域边界范围的敏感性和影响机制.通过对比不同边界范围的仿真结果与实验数据发现,尤其是位于整个矩形计算域的最上方边界(上边界)和最右侧边界(右边界):(1)当等离子体边界与泊松方程边界均采用比放电本身半径宽6倍以上的边界范围时,放电宽度与传播速度与实验吻合度较高,但放电到达板电极时刻仍存在流体模型所具有的普遍性延迟;(2)等离子体计算域边界的缩减仅使放电头部电场强度与电子密度产生可忽略的微弱波动,证明其对弥散放电宏观特性影响甚微;(3)泊松方程计算域右边界范围缩减导致放电宽度显著降低,其放电宽度-计算域比值递增,且放电在上、下半间隙呈现非对称传播特征,但适当缩减右边界可改善放电形貌与实验的匹配度;(4)泊松方程计算域上边界缩减会弱化放电头部电场“聚焦效应”,导致空间电场分布均匀化,延缓放电加速过程,使仿真结果偏离实验更显著.泊松方程边界范围对放电时空演化具有决定性影响,其中计算域上边界缩减会严重损害仿真精度,而右边界调整可权衡计算效率与结果可靠性.
    Diffuse discharges generated under fast nanosecond-pulse rising edges possess a larger discharge radius compared to classic streamer discharges. However, existing simulation studies often employ boundary ranges similar to those used for simulating streamer discharges, thereby neglecting the influence of the boundary range on their characteristics. This study investigates the characteristics of diffuse discharges in atmospheric-pressure air using a fluid model. The research focuses on the influence of plasma and Poisson equation boundary ranges on discharge evolution, particularly the top and right boundaries of the rectangular computational domain. Numerical simulations and experimental comparisons reveal several key findings: When both plasma and Poisson equation boundaries are set to 5cm×5cm (exceeding six times the maximum discharge radius), the simulated discharge width and propagation velocity agree well with experimental measurements. However, a consistent delay is observed in the simulated arrival time at the plate electrode, highlighting inherent limitations of current fluid models in accurately simulating temporal scales. Reducing the plasma boundaries results in negligible fluctuations in electric field intensity and electron density at the discharge head, indicating a minimal impact on macroscopic discharge characteristics. Narrowing the Poisson equation’s right boundary significantly reduces the discharge width while simultaneously increasing the discharge width relative to the domain size. Asymmetric propagation patterns emerge between the upper and lower halves of the discharge gap. Nevertheless, appropriate reduction of the right boundary improves morphological consistency with experimental observations, suggesting practical optimization strategies. Conversely, reducing the top boundary weakens the electric field “focusing effect” at the discharge head, homogenizes the spatial field distribution, and delays acceleration, thereby exacerbating deviations from experimental data. These results demonstrate that Poisson boundary conditions critically govern spatiotemporal discharge dynamics. Top boundary truncation severely compromises simulation accuracy, whereas adjusting the right boundary allows for a balanced optimization between computational efficiency and result reliability. This work provides theoretical guidance for selecting boundary conditions in the numerical modeling of diffuse discharges.
  • [1]

    Chng T L, Pai D Z, Guaitella O, Starikovskaia S M, Bourdon A 2022Plasma Sources Science & Technology 31 015010

    [2]

    Brisset A, Guenin T, Tardiveau P, Sobota A 2023Plasma Sources Science & Technology 32 065014

    [3]

    Babaeva N Y, Naidis G V 2016Physics of Plasmas 23 083527

    [4]

    Nijdam S, Teunissen J, Ebert U 2020Plasma Sources Science & Technology 29 103001

    [5]

    Marode E, Dessante P, Tardiveau P 2016Plasma Sources Science & Technology 25 064004

    [6]

    Tardiveau P, Moreau N, Bentaleb S, Postel C, Pasquiers S 2009Journal of Physics D-Applied Physics 42 175202

    [7]

    Babaeva N Y, Naidis G V, Tereshonok D V, Son E E 2018Journal of Physics D-Applied Physics 51 434002

    [8]

    Bourdon A, Péchereau F, Tholin F, Bonaventura Z 2021Journal of Physics D-Applied Physics 54 075204

    [9]

    Bourdon A, Péchereau F, Tholin F, Bonaventura Z 2021Plasma Sources Science & Technology 30 105022

    [10]

    Zhu Y F, Chen X C, Wu Y, Hao J B, Ma X G, Lu P F, Tardiveau P 2021Plasma Sources Science & Technology 30 075025

    [11]

    Brisset A, Gazeli K, Magne L, Pasquiers S, Jeanney P, Marode E, Tardiveau P 2019Plasma Sources Science & Technology 28 055016

    [12]

    Guo Y L, Li Y R, Zhu Y F, Sun A B 2023Plasma Sources Science & Technology 32 025003

    [13]

    Grubert G K, Becker M M, Loffhagen D 2009Physical Review E 80 036405

    [14]

    Bourdon A, Pasko V P, Liu N Y, Célestin S, Ségur P, Marode E 2007Plasma Sources Science & Technology 16 656

    [15]

    Pancheshnyi S 2015Plasma Sources Science & Technology 24 015023

    [16]

    Phelps A V, Pitchford L C 1985Physical Review A 31 2932

    [17]

    Lawton S A, Phelps A V 1978The Journal of Chemical Physics 69 1055

    [18]

    Pancheshnyi S 2013Journal of Physics D-Applied Physics 46 155201

    [19]

    Kossyi I A, Kostinsky A Y, Matveyev A A, Silakov V P 1992Plasma Sources Science & Technology 1 207

    [20]

    Pancheshnyi S, Nudnova M, Starikovskii A 2005Physical Review E 71 016407

    [21]

    Li X R, Dijcks S, Nijdam S, Sun A B, Ebert U, Teunissen J 2021Plasma Sources Science & Technology 30 095002

    [22]

    Li X R, Guo B H, Sun A B, Ebert U, Teunissen J 2022Plasma Sources Science & Technology 31 065011

    [23]

    Guo B H, Li X R, Ebert U, Teunissen J 2022Plasma Sources Science & Technology 31 095011

    [24]

    Li H W, Sun A B, Zhang X, Yao C W, Chang Z S, Zhang G J 2018Acta Physica Sinica 67 045101(in Chinese) [李晗蔚,孙安邦,姚聪伟,常正实,张冠军2018物理学报67 045101]

    [25]

    Li Y T, Fu Y Y, Liu Z G, Li H D, Wang P, Luo H Y, Zou X B, Wang X X 2022Plasma Sources Science & Technology 31 045027

    [26]

    Zhang C, Ma H, Shao T, Xie Q, Yang W J, Yan P 2014Acta Physica Sinica 63 085208(in Chinese) [章程,马浩,邵涛,谢庆,杨文晋,严萍2014物理学报63 085208]

    [27]

    Shao T, Tarasenko V F, Yang W J, Beloplotov D V, Zhang C, Lomaev M I, Yan P, Sorokin D A 2014Chinese Physics Letters 31 085201

  • [1] 梁远毅, 方振松, 贺亚峰, 李庆, 何寿杰. 微空心阴极自脉冲放电微观动力学过程. 物理学报, doi: 10.7498/aps.74.20241586
    [2] 魏振宇, 刘亚坤. 不同氧浓度混合气体二次流注放电下激发态氧原子生成特性与影响因素. 物理学报, doi: 10.7498/aps.74.20241550
    [3] 方泽, 潘泳全, 戴栋, 张俊勃. 基于源项解耦的物理信息神经网络方法及其在放电等离子体模拟中的应用. 物理学报, doi: 10.7498/aps.73.20240343
    [4] 艾飞, 刘志兵, 张远涛. 结合机器学习的大气压介质阻挡放电数值模拟研究. 物理学报, doi: 10.7498/aps.71.20221555
    [5] 齐兵, 田晓, 王静, 王屹山, 司金海, 汤洁. 射频/直流驱动大气压氩气介质阻挡放电的一维仿真研究. 物理学报, doi: 10.7498/aps.71.20221361
    [6] 赵立芬, 哈静, 王非凡, 李庆, 何寿杰. 氧气空心阴极放电模拟. 物理学报, doi: 10.7498/aps.71.20211150
    [7] 王倩, 赵江山, 范元媛, 郭馨, 周翊. 不同缓冲气体中ArF准分子激光系统放电特性分析. 物理学报, doi: 10.7498/aps.69.20200087
    [8] 何寿杰, 周佳, 渠宇霄, 张宝铭, 张雅, 李庆. 氩气空心阴极放电复杂动力学过程的模拟研究. 物理学报, doi: 10.7498/aps.68.20190734
    [9] 赵曰峰, 王超, 王伟宗, 李莉, 孙昊, 邵涛, 潘杰. 大气压甲烷针-板放电等离子体中粒子密度和反应路径的数值模拟. 物理学报, doi: 10.7498/aps.67.20172192
    [10] 李晗蔚, 孙安邦, 张幸, 姚聪伟, 常正实, 张冠军. 针-板空气间隙流注放电起始过程的三维PIC/MCC仿真研究. 物理学报, doi: 10.7498/aps.67.20172309
    [11] 何寿杰, 张钊, 赵雪娜, 李庆. 微空心阴极维持辉光放电的时空特性. 物理学报, doi: 10.7498/aps.66.055101
    [12] 姚聪伟, 马恒驰, 常正实, 李平, 穆海宝, 张冠军. 大气压介质阻挡辉光放电脉冲的阴极位降区特性及其影响因素的数值仿真. 物理学报, doi: 10.7498/aps.66.025203
    [13] 李元, 穆海宝, 邓军波, 张冠军, 王曙鸿. 正极性纳秒脉冲电压下变压器油中流注放电仿真研究. 物理学报, doi: 10.7498/aps.62.124703
    [14] 张增辉, 张冠军, 邵先军, 常正实, 彭兆裕, 许昊. 大气压Ar/NH3介质阻挡辉光放电的仿真研究. 物理学报, doi: 10.7498/aps.61.245205
    [15] 张增辉, 邵先军, 张冠军, 李娅西, 彭兆裕. 大气压氩气介质阻挡辉光放电的一维仿真研究. 物理学报, doi: 10.7498/aps.61.045205
    [16] 夏广庆, 薛伟华, 陈茂林, 朱雨, 朱国强. 氩气微腔放电中特性参数的数值模拟研究. 物理学报, doi: 10.7498/aps.60.015201
    [17] 邵先军, 马跃, 李娅西, 张冠军. 低气压氙气介质阻挡放电的一维仿真研究. 物理学报, doi: 10.7498/aps.59.8747
    [18] 张旭, 周玉泽, 闭强, 杨兴华, 俎云霄. 有边界条件的忆阻元件模型及其性质. 物理学报, doi: 10.7498/aps.59.6673
    [19] 董丽芳, 谢伟霞, 赵海涛, 范伟丽, 贺亚峰, 肖红. 氩气/空气介质阻挡放电自组织超六边形斑图实验研究. 物理学报, doi: 10.7498/aps.58.4806
    [20] 周俐娜, 王新兵. 微空心阴极放电的流体模型模拟. 物理学报, doi: 10.7498/aps.53.3440
计量
  • 文章访问数:  16
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-07-01

/

返回文章
返回