-
建立了二维轴对称流体模型, 仿真研究了正极性纳秒脉冲电压下变压器油中针-板电极流注放电的起始与发展过程, 得到了不同的外施电压幅值、脉冲上升沿时间与电极间隙距离下油中流注放电的形貌、 电场强度与空间电荷密度分布等. 仿真结果表明: 空间电荷加强了流注头部前方电场, 使流注通道更易于向前推进, 形成"电离波"; 随着外施电压幅值升高, 流注发展的平均速度显著变大; 较陡的脉冲上升沿形成的放电半径较大, 对应的最大电场强度值变小; 随着电极间隙距离的增加, 流注发展平均速度变快. 仿真显示纳秒脉冲下放电中油温无明显升高, 表明此类放电过程没有明显的油气化现象. 我们认为, 场致电离是油中带电粒子产生的主导机制; 空间电荷效应增强流注前方电场使得电离进一步发展, 最终导致击穿. 本研究有助于加深对变压器油中放电起始、发展直至击穿过程的认识以及对液体电介质中电离机制的理解.In this paper, we investigate the streamer discharge process in transformer oil under positive nanosecond pulse voltage through developing a two-dimensional axially symmetric fluid model and simulating the physics of discharge inception and propagation. The streamer discharge profile and distributions of electric field and space charge density are obtained under different conditions such as the amplitude of applied voltage, rise time and gap distance. Simulation results show that space charges enhance the front field of streamer head, which is conducive to the longer propagation of discharge channel, therefore "ionization wave" is formed. The magnitude and rise time of applied voltage have evident influences on the average speed of streamer propagation. It can be observed that the higher the applied impulse voltage, the faster the streamer propagates, and the steeper the rise time of applied impulse, when streamer arrives at the same position, the larger the discharging radius will be and the smaller maximal electric field will be. The cases of different gap distances indicate that longer gap distance corresponds to a faster average speed of streamer. It is considered that field-dependent molecular ionization predominates the charge generation mechanism of streamer discharge process in transformer oil, and space charge effect contributes to further developing ionization until the whole gap eventually breakdowns. The study is dedicated to the better understanding of the process from inception to breakdown of discharging in transformer oil, as well as ionization mechanism in liquid dielectric.
-
Keywords:
- transformer oil /
- fluid model /
- streamer discharge /
- space charge effect
[1] Wang Y 1991 High Power Pulsed Power Supply (Beijing: Atomic Energy Press) pp5-11 (in Chinese) [王莹 1991 高功率脉冲电源(北京: 原子能出版社)第5–11页]
[2] Zhou Y X, Sha Y C, Nie D X, Wu Z R, Deng J G, Lu L C 2012 High Voltage Engineering 38 1163 (in Chinese) [周远翔, 沙彦超, 聂德鑫, 伍志荣, 邓建刚, 卢理成 2012 高电压技术 38 1163]
[3] Wang W R, He D H 1985 High Voltage Engineering 4 24 (in Chinese) [王文瑞, 何大海 1985 高电压技术 4 24]
[4] Wang Y, Shao T, Yan P, Huang W L, Zhang S C, Sun G S 2005 High Voltage Apparatus 41 1 (in Chinese) [王钰, 邵涛, 严萍, 黄文力, 张适昌, 孙广生 2005 高压电器 41 1]
[5] Lehr J M, Agee F J, Copeland R, Prather W D 1998 IEEE Trans. Dielectr. Insul. 5 857
[6] Huang L W, Sun G S, Wang Y, Yan P 2005 High Voltage Apparatus 41 131 (in Chinese) [黄文力, 孙广生, 王钰, 严萍 2005 高压电器 41 131]
[7] Zhang J Q, Jiang X L, Chen Z G 2006 High Power Laser and Particle Beams 18 1053 (in Chinese) [张晋琪, 蒋兴良, 陈志刚 2006 强激光与离子束 18 1053]
[8] Zhang C, Shao T, Niu Z, Zhang D D, Wang Y, Yan P 2012 Acta Phys. Sin. 61 035202 (in Chinese) [张程, 邵涛, 牛铮, 张东东, 王钰, 严萍 2012 物理学报 61 035202]
[9] Zhang Y H, Ma Q S, Xiang F, Gan Y Q, Chang A B, Liu Z, Zhou C M 2005 Acta Phys. Sin. 54 3111 (in Chinese) [张永辉, 马乔生, 向飞, 甘延青, 常安碧, 刘忠, 周传明 2005 物理学报 54 3111]
[10] L X G, Ren C S, Ma T C, Zhu H L, Qian M Y, Wang D Z 2010 Acta Phys. Sin. 59 7917 (in Chinese) [吕晓桂, 任春生, 马腾才, 朱海龙, 钱沐扬, 王德真 2010 物理学报 59 7917]
[11] IEC Standard #60897 (1987) Methods for the Determination of Lightning Impulse Breakdown Voltage of Insulating Liquid.
[12] Tran T N, Golosnoy I O, Lewin P L, Georghiou G E 2010 J. Phys. D: Appl. Phys. 44 015203
[13] Morrow R, Lowke J J 1997 J. Phys. D: Appl. Phys. 30 614
[14] Shao X J, Ma Y, Li Y X, Zhang G J 2010 Acta Phys. Sin. 59 8747 (in Chinese) [邵先军, 马跃, 李娅西, 张冠军 2010 物理学报 59 8747]
[15] Jadidian J, Zahn M 2011 Conference Proceedings of International Symposium on Electrical Insulating Materials 2011 Tokyo, September 6-11, 1999 p506
[16] Qian J, Joshi R P, Schamiloglu E, Gaudet J, Woodworth J, Lehr J 2006 J. Phys. 39 359
[17] Lesaint O, Massala G 1998 IEEE Trans. Dielectr. Insul. 5 360
[18] Lundgaard L, Linhjell D, Berg G, Sigmond S 1998 IEEE Trans. Dielectr. Insul. 5 388
[19] Kulikovsky A A 1997 J. Phys. D: Appl. Phys. 30 441
[20] Harada M, Ohga Y, Watanabe I, Watarai H 1999 Chem. Phys. Lett. 303 489
[21] Smalo H S, Hestad o, Ingebrigtsen S, Åstrand P 2011 J. Appl. Phys. 109 073306
[22] Tobazéon R 1994 IEEE Trans. Dielec. Electr. Insul. 1 1132
[23] Wang X X, Lu M Z, Pu Y K 2002 Acta Phys. Sin. 51 2778 (in Chinese) [王新新, 芦明泽, 蒲以康 2002 物理学报 51 2778]
[24] Shao T, Sun G S, Yan P, Gu C, Zhang S C 2006 Acta Phys. Sin. 55 5964 (in Chinese) [邵涛, 孙广生, 严萍, 谷琛, 张适昌 2006 物理学报 55 5964]
[25] Halpern B, Gomer R 1969 J. Chem. Phys. 51 1048
[26] Béroual A, Tobazéon R 1986 IEEE Trans. Dielec. Electr. Insul. E1-21 613
[27] Tobazéon R, Filippini J C, Marteau C 1994 IEEE Trans. Dielec. Electr. Insul. 1 1000
[28] Zener C 1934 Proc. R. Soc. London A 145 523
[29] Jadidian J, Zahn M, Lavesson N, Widlund O, Borg K 2012 IEEE Trans. Plasma Sci. 40 909
[30] Zhang Z H, Shao X J, Zhang G J, Li Y X, Peng Z Y 2012 Acta Phys. Sin. 61 045205 (in Chinese) [张增辉, 邵先军, 张冠军, 李娅西, 彭兆裕 2012 物理学报 61 045205]
[31] Chen Y H, Fan B C, Chen Z H, Zhou B M 2008 Acta Phys. Sin. 57 064806 (in Chinese) [陈耀慧, 范宝春, 陈志华, 周本谋 2008 物理学报 57 064806]
[32] Devins J C, Rzad S J, Schwabe R J 1981 J. Phys. D: Appl. Phys. 52 4531
[33] Lesaint O, Tobazéon R 1988 IEEE Trans. Dielectr. Insul. 23 941
-
[1] Wang Y 1991 High Power Pulsed Power Supply (Beijing: Atomic Energy Press) pp5-11 (in Chinese) [王莹 1991 高功率脉冲电源(北京: 原子能出版社)第5–11页]
[2] Zhou Y X, Sha Y C, Nie D X, Wu Z R, Deng J G, Lu L C 2012 High Voltage Engineering 38 1163 (in Chinese) [周远翔, 沙彦超, 聂德鑫, 伍志荣, 邓建刚, 卢理成 2012 高电压技术 38 1163]
[3] Wang W R, He D H 1985 High Voltage Engineering 4 24 (in Chinese) [王文瑞, 何大海 1985 高电压技术 4 24]
[4] Wang Y, Shao T, Yan P, Huang W L, Zhang S C, Sun G S 2005 High Voltage Apparatus 41 1 (in Chinese) [王钰, 邵涛, 严萍, 黄文力, 张适昌, 孙广生 2005 高压电器 41 1]
[5] Lehr J M, Agee F J, Copeland R, Prather W D 1998 IEEE Trans. Dielectr. Insul. 5 857
[6] Huang L W, Sun G S, Wang Y, Yan P 2005 High Voltage Apparatus 41 131 (in Chinese) [黄文力, 孙广生, 王钰, 严萍 2005 高压电器 41 131]
[7] Zhang J Q, Jiang X L, Chen Z G 2006 High Power Laser and Particle Beams 18 1053 (in Chinese) [张晋琪, 蒋兴良, 陈志刚 2006 强激光与离子束 18 1053]
[8] Zhang C, Shao T, Niu Z, Zhang D D, Wang Y, Yan P 2012 Acta Phys. Sin. 61 035202 (in Chinese) [张程, 邵涛, 牛铮, 张东东, 王钰, 严萍 2012 物理学报 61 035202]
[9] Zhang Y H, Ma Q S, Xiang F, Gan Y Q, Chang A B, Liu Z, Zhou C M 2005 Acta Phys. Sin. 54 3111 (in Chinese) [张永辉, 马乔生, 向飞, 甘延青, 常安碧, 刘忠, 周传明 2005 物理学报 54 3111]
[10] L X G, Ren C S, Ma T C, Zhu H L, Qian M Y, Wang D Z 2010 Acta Phys. Sin. 59 7917 (in Chinese) [吕晓桂, 任春生, 马腾才, 朱海龙, 钱沐扬, 王德真 2010 物理学报 59 7917]
[11] IEC Standard #60897 (1987) Methods for the Determination of Lightning Impulse Breakdown Voltage of Insulating Liquid.
[12] Tran T N, Golosnoy I O, Lewin P L, Georghiou G E 2010 J. Phys. D: Appl. Phys. 44 015203
[13] Morrow R, Lowke J J 1997 J. Phys. D: Appl. Phys. 30 614
[14] Shao X J, Ma Y, Li Y X, Zhang G J 2010 Acta Phys. Sin. 59 8747 (in Chinese) [邵先军, 马跃, 李娅西, 张冠军 2010 物理学报 59 8747]
[15] Jadidian J, Zahn M 2011 Conference Proceedings of International Symposium on Electrical Insulating Materials 2011 Tokyo, September 6-11, 1999 p506
[16] Qian J, Joshi R P, Schamiloglu E, Gaudet J, Woodworth J, Lehr J 2006 J. Phys. 39 359
[17] Lesaint O, Massala G 1998 IEEE Trans. Dielectr. Insul. 5 360
[18] Lundgaard L, Linhjell D, Berg G, Sigmond S 1998 IEEE Trans. Dielectr. Insul. 5 388
[19] Kulikovsky A A 1997 J. Phys. D: Appl. Phys. 30 441
[20] Harada M, Ohga Y, Watanabe I, Watarai H 1999 Chem. Phys. Lett. 303 489
[21] Smalo H S, Hestad o, Ingebrigtsen S, Åstrand P 2011 J. Appl. Phys. 109 073306
[22] Tobazéon R 1994 IEEE Trans. Dielec. Electr. Insul. 1 1132
[23] Wang X X, Lu M Z, Pu Y K 2002 Acta Phys. Sin. 51 2778 (in Chinese) [王新新, 芦明泽, 蒲以康 2002 物理学报 51 2778]
[24] Shao T, Sun G S, Yan P, Gu C, Zhang S C 2006 Acta Phys. Sin. 55 5964 (in Chinese) [邵涛, 孙广生, 严萍, 谷琛, 张适昌 2006 物理学报 55 5964]
[25] Halpern B, Gomer R 1969 J. Chem. Phys. 51 1048
[26] Béroual A, Tobazéon R 1986 IEEE Trans. Dielec. Electr. Insul. E1-21 613
[27] Tobazéon R, Filippini J C, Marteau C 1994 IEEE Trans. Dielec. Electr. Insul. 1 1000
[28] Zener C 1934 Proc. R. Soc. London A 145 523
[29] Jadidian J, Zahn M, Lavesson N, Widlund O, Borg K 2012 IEEE Trans. Plasma Sci. 40 909
[30] Zhang Z H, Shao X J, Zhang G J, Li Y X, Peng Z Y 2012 Acta Phys. Sin. 61 045205 (in Chinese) [张增辉, 邵先军, 张冠军, 李娅西, 彭兆裕 2012 物理学报 61 045205]
[31] Chen Y H, Fan B C, Chen Z H, Zhou B M 2008 Acta Phys. Sin. 57 064806 (in Chinese) [陈耀慧, 范宝春, 陈志华, 周本谋 2008 物理学报 57 064806]
[32] Devins J C, Rzad S J, Schwabe R J 1981 J. Phys. D: Appl. Phys. 52 4531
[33] Lesaint O, Tobazéon R 1988 IEEE Trans. Dielectr. Insul. 23 941
计量
- 文章访问数: 8186
- PDF下载量: 1362
- 被引次数: 0