搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光电离速率影响大气压空气正流注分支的机理研究

涂婧怡 陈赦 汪沨

引用本文:
Citation:

光电离速率影响大气压空气正流注分支的机理研究

涂婧怡, 陈赦, 汪沨

Influence of photoionization rates on positive streamer branching in atmospheric air

Tu Jing-Yi, Chen She, Wang Feng
PDF
HTML
导出引用
  • 大气压空气中的流注放电有广泛的理论和应用研究价值, 包括雷电机理、输变电系统空气绝缘理论以及材料表面改性等. 流注是一个快速发展的强电离区域, 在传播过程中存在着一种重要的特点—分支现象. 光电离为正流注发展提供必要的自由电子, 且实验结果表明分支特征与流注头部的光电离速率密切相关. 本文基于新的流注分支判据, 采用了粒子网格单元与蒙特卡罗碰撞相结合(PIC-MCC)的三维放电模型(Pamdi3D)进行数值仿真验证. 为了研究光电离速率对正流注分支的影响, 仿真了毫米尺度间隙针-板电极正流注发展, 系统研究了不同光电离参数的影响. 当减小氮气-氧气比例、光子吸收截面或光电离效率系数后, 流注均更早地出现分支现象. 这些计算结果表明大气压空气中流注头部光电离速率的降低将导致其发生分支的概率更高.
    Streamer is a strong ionizing region which advances very quickly in gases, liquids and solids. Streamer is a low-temperature plasma, which produces a variety of chemically reactive substances efficiently. So, streamer discharge has been widely adopted in industry. Furthermore, streamer is the initial stage of electric breakdown in long air gap. Studying the streamer discharge characteristics and its mechanism is the basis of external insulation in power transmission systems.Streamer branching is a significant characteristic during its development. Lichtenberg figure is the first clear recording of the filamentary structure of streamers. One of acceptable explanations is that the random fluctuations of the electron density ahead of streamer trigger branching. Furthermore, photoionization provides the necessary free electrons for the development of positive streamers. The experimental results show that the branching characteristics are closely related to the photoionization rate in streamer head. The streamer shows higher possibility of branching if the photoionization rate decreases. Since previous experiment is indirect evidence of this deduction, we turn to numerical models to study the influence of photoionization rates on positive streamer branching in atmospheric air. A three-dimensional particle-in-cell model with Monte Carlo collision (PIC-MCC) scheme called Pamdi3D (Teunissen J, Ebert U 2016 Plasma Sources Sci. Technol. 25 044005) is employed in this paper. The development and branching of positive streamersin a millimeter-scale needle-plane gap are simulated at atmospheric pressure. Different streamer branching behaviors are investigated by artificially changing the nitrogen-oxygen ratio, the absorption cross section of oxygen, and the photoionization efficiency coefficient.The effects of different photoionization parameters are systematically studied. When the nitrogen-oxygen ratio, photon absorption cross section or photoionization efficiency coefficient are reduced, the streamer branching occurs earlier in three cases after reducing the photoionization rate. These results imply that the streamer shows higher possibility of branching if the photoionization rate decreases. When the streamer propagates in a non-uniform electric field region and the photoionization rate decreases to a certain value, it is believed that the seed electron distribution is more susceptible to random fluctuations. It will lead to instability in the space charge layer of streamer, thus causing the streamer to branch. Hence it is proposed that streamer branch will be triggered more easily if the photoionization rate in the streamer head decreases, in the case without considering other seed electron sources.
      通信作者: 陈赦, chenshe@hnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51607061, 51677061)和中央高校基本科研业务费(批准号: 531107040929)资助的课题.
      Corresponding author: Chen She, chenshe@hnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51607061, 51677061) and the Fundamental Research Funds for the Central Universities, China (Grant No. 531107040929).
    [1]

    Chang J, Lawless P A, Yamamoto T 1991 Plasma Sci. IEEE Trans. 19 1152Google Scholar

    [2]

    Shao T, Wang R, Zhang C, Yan P 2016 High Voltage 3 14Google Scholar

    [3]

    Gallimberti I, Bacchiega G, Bondiou-Clergerie A, Lalande P 2002 Compt. Rendus Phys. 3 1335Google Scholar

    [4]

    李元, 穆海宝, 邓军波, 张冠军, 王曙鸿 2013 物理学报 62 124703Google Scholar

    Li Y, Mu H B, Deng J B, Zhang G J, Wang S H 2013 Acta Phys. Sin. 62 124703Google Scholar

    [5]

    Pasko V P, Stanley M A, Mathews J D, Inan U S, Wood T G 2002 Nature 416 152Google Scholar

    [6]

    Raizer Y P 1991 Gas Discharge Physics (Berlin: Springer-Verlag) pp334−337

    [7]

    Nijdam S, Takahashi E, Teunissen J, Ebert U 2014 New J. Phys. 16 103038Google Scholar

    [8]

    Pancheshnyi S 2005 Plasma Sources Sci. Technol. 14 645Google Scholar

    [9]

    Nijdam S, Wormeester G, van Veldhuizen E M, Ebert U 2011 J. Phys. D: Appl. Phys. 44 455201Google Scholar

    [10]

    Liu N, Pasko V P 2004 J. Geophys. Res.: Space Phys. 109 A4Google Scholar

    [11]

    Zhelezniak M B, Mnatsakanian A K, Sizykh S V 1982 High Temperat. Sci. 20 423

    [12]

    Chen S, Wang F, Sun Q, Zeng R 2018 IEEE Trans. Dielectr. Electr. Insulat. 25 1128Google Scholar

    [13]

    Nasser E, Loeb L B 1963 J. Appl. Phys. 34 3340Google Scholar

    [14]

    van Veldhuizen E M, Rutgers W R 2002 J. Phys. D: Appl. Phys. 35 2169Google Scholar

    [15]

    Chen S, Zeng R, Zhuang C 2013 J. Phys. D: Appl. Phys. 46 375203Google Scholar

    [16]

    Zeng R, Chen S 2013 J. Phys. D: Appl. Phys. 46 485201Google Scholar

    [17]

    Luque A, Ebert U 2011 Phys. Rev. E 84 046411Google Scholar

    [18]

    Chen S, Wang F, Sun Q, Zeng R 2018 IEEE Trans. Dielectr. Electr. Insulat. 25 2112Google Scholar

    [19]

    Ono R, Oda T 2003 J. Phys. D: Appl. Phys. 36 1952Google Scholar

    [20]

    Briels T M P, van Veldhuizen E M, Ebert U 2008 J. Phys. D: Appl. Phys. 41 234008Google Scholar

    [21]

    Heijmans L C J, Nijdam S, van Veldhuizen E M, Ebert U 2013 Europhys. Lett. 103 25002Google Scholar

    [22]

    Papageorgiou L, Metaxas A C, Georghiou G E 2011 IEEE Trans. Plasma Sci. 39 2224Google Scholar

    [23]

    Arrayás M, Fontelos M A, Kindelán U 2012 Phys. Rev. E 86 066407Google Scholar

    [24]

    Xiong Z, Kushner M J 2014 Plasma Sources Sci. Technol. 23 065041Google Scholar

    [25]

    Zhuang C, Huang M, Zeng R 2018 Commun. Computat. Phys. 24 1259Google Scholar

    [26]

    Chanrion O, Neubert T 2008 J. Computat. Phys. 227 7222Google Scholar

    [27]

    Teunissen J, Ebert U 2014 J. Computat. Phys. 259 318Google Scholar

    [28]

    孙安邦, 李晗蔚, 许鹏, 张冠军 2017 物理学报 66 195101Google Scholar

    Sun A B, Li H W, Xu P, Zhang G J 2017 Acta Phys. Sin. 66 195101Google Scholar

    [29]

    李晗蔚, 孙安邦, 张幸, 姚聪伟, 常正实, 张冠军 2018 物理学报 67 045101Google Scholar

    Li H W, Sun A B, Zhang X, Yao C W, Chang Z S, Zhang G J 2018 Acta Phys. Sin. 67 045101Google Scholar

    [30]

    Teunissen J, Ebert U 2016 Plasma Sources Sci. Technol. 25 044005Google Scholar

    [31]

    Penney G W, Hummert G T 1970 J. Appl. Phys. 41 572Google Scholar

  • 图 1  合成空气中流注放电分支图像(气压100 mbar (1 bar = 105 Pa), 16 cm尖-板间隙, 脉冲电压幅值为10 kV)[12]

    Fig. 1.  Branching structure of streamer discharges in synthetic air (the air pressure is 100 mbar; 16 cm point-plane gap, pulse voltage amplitude 10 kV)[12].

    图 2  间隙布置示意图

    Fig. 2.  Schematic diagram of electrode arrangement.

    图 3  不同氮气-氧气比例下流注电子密度三维仿真结果(t = 9 ns) (a) 80% : 20%; (b) 99% : 1%; (c) 1% : 99%

    Fig. 3.  Three-dimensional simulation results of electron density at t = 9 ns for different nitrogen-oxygen ratio: (a) 80% : 20%; (b) 99% : 1%; (c) 1% : 99%.

    图 4  不同氮气-氧气比例下流注发展仿真结果对比 (a) 80% : 20%; (b) 99% : 1%; (c) 1% : 99%

    Fig. 4.  Electron density and electric field in simulated region at different moments. It shows the comparison of streamer branching results for different nitrogen-oxygen ratio: (a) 80% : 20%; (b) 99% : 1%; (c) 1% : 99%.

    图 5  不同氧气吸收光子电离截面下流注发展 (a) χmin = 0.0035 Torr–1·cm–1; (b) χmin = 0.7 Torr–1·cm–1

    Fig. 5.  Electron density and electric field in simulated region at different moments. It shows the comparison of streamerbranching results for different absorption cross sections: (a) χmin = 0.0035 Torr–1·cm–1; (b) χmin = 0.7 Torr–1·cm–1.

    图 6  光电离效率系数关于约化场强的取值

    Fig. 6.  Photoionization efficiency coefficient as a function of reduced electric field.

    图 7  不同光电离效率系数下流注发展仿真结果对比 (a) 2$P{I_{{\rm{eff}}}}$; (b) 0.1$P{I_{{\rm{eff}}}}$

    Fig. 7.  Electron density and electric field in simulated region at different moments. It shows the comparison of streamer branching results for different photoionization efficiency coefficient: (a) 2$P{I_{{\rm{eff}}}}$; (b) 0.1$P{I_{{\rm{eff}}}}$.

  • [1]

    Chang J, Lawless P A, Yamamoto T 1991 Plasma Sci. IEEE Trans. 19 1152Google Scholar

    [2]

    Shao T, Wang R, Zhang C, Yan P 2016 High Voltage 3 14Google Scholar

    [3]

    Gallimberti I, Bacchiega G, Bondiou-Clergerie A, Lalande P 2002 Compt. Rendus Phys. 3 1335Google Scholar

    [4]

    李元, 穆海宝, 邓军波, 张冠军, 王曙鸿 2013 物理学报 62 124703Google Scholar

    Li Y, Mu H B, Deng J B, Zhang G J, Wang S H 2013 Acta Phys. Sin. 62 124703Google Scholar

    [5]

    Pasko V P, Stanley M A, Mathews J D, Inan U S, Wood T G 2002 Nature 416 152Google Scholar

    [6]

    Raizer Y P 1991 Gas Discharge Physics (Berlin: Springer-Verlag) pp334−337

    [7]

    Nijdam S, Takahashi E, Teunissen J, Ebert U 2014 New J. Phys. 16 103038Google Scholar

    [8]

    Pancheshnyi S 2005 Plasma Sources Sci. Technol. 14 645Google Scholar

    [9]

    Nijdam S, Wormeester G, van Veldhuizen E M, Ebert U 2011 J. Phys. D: Appl. Phys. 44 455201Google Scholar

    [10]

    Liu N, Pasko V P 2004 J. Geophys. Res.: Space Phys. 109 A4Google Scholar

    [11]

    Zhelezniak M B, Mnatsakanian A K, Sizykh S V 1982 High Temperat. Sci. 20 423

    [12]

    Chen S, Wang F, Sun Q, Zeng R 2018 IEEE Trans. Dielectr. Electr. Insulat. 25 1128Google Scholar

    [13]

    Nasser E, Loeb L B 1963 J. Appl. Phys. 34 3340Google Scholar

    [14]

    van Veldhuizen E M, Rutgers W R 2002 J. Phys. D: Appl. Phys. 35 2169Google Scholar

    [15]

    Chen S, Zeng R, Zhuang C 2013 J. Phys. D: Appl. Phys. 46 375203Google Scholar

    [16]

    Zeng R, Chen S 2013 J. Phys. D: Appl. Phys. 46 485201Google Scholar

    [17]

    Luque A, Ebert U 2011 Phys. Rev. E 84 046411Google Scholar

    [18]

    Chen S, Wang F, Sun Q, Zeng R 2018 IEEE Trans. Dielectr. Electr. Insulat. 25 2112Google Scholar

    [19]

    Ono R, Oda T 2003 J. Phys. D: Appl. Phys. 36 1952Google Scholar

    [20]

    Briels T M P, van Veldhuizen E M, Ebert U 2008 J. Phys. D: Appl. Phys. 41 234008Google Scholar

    [21]

    Heijmans L C J, Nijdam S, van Veldhuizen E M, Ebert U 2013 Europhys. Lett. 103 25002Google Scholar

    [22]

    Papageorgiou L, Metaxas A C, Georghiou G E 2011 IEEE Trans. Plasma Sci. 39 2224Google Scholar

    [23]

    Arrayás M, Fontelos M A, Kindelán U 2012 Phys. Rev. E 86 066407Google Scholar

    [24]

    Xiong Z, Kushner M J 2014 Plasma Sources Sci. Technol. 23 065041Google Scholar

    [25]

    Zhuang C, Huang M, Zeng R 2018 Commun. Computat. Phys. 24 1259Google Scholar

    [26]

    Chanrion O, Neubert T 2008 J. Computat. Phys. 227 7222Google Scholar

    [27]

    Teunissen J, Ebert U 2014 J. Computat. Phys. 259 318Google Scholar

    [28]

    孙安邦, 李晗蔚, 许鹏, 张冠军 2017 物理学报 66 195101Google Scholar

    Sun A B, Li H W, Xu P, Zhang G J 2017 Acta Phys. Sin. 66 195101Google Scholar

    [29]

    李晗蔚, 孙安邦, 张幸, 姚聪伟, 常正实, 张冠军 2018 物理学报 67 045101Google Scholar

    Li H W, Sun A B, Zhang X, Yao C W, Chang Z S, Zhang G J 2018 Acta Phys. Sin. 67 045101Google Scholar

    [30]

    Teunissen J, Ebert U 2016 Plasma Sources Sci. Technol. 25 044005Google Scholar

    [31]

    Penney G W, Hummert G T 1970 J. Appl. Phys. 41 572Google Scholar

  • [1] 赵婷, 宫毛毛, 张松斌. 氦原子贝塞尔涡旋光电离的理论研究. 物理学报, 2024, 73(24): 1-8. doi: 10.7498/aps.73.20241378
    [2] 戈迪, 赵国鹏, 祁月盈, 陈晨, 高俊文, 侯红生. 等离子体环境中相对论效应对类氢离子光电离过程的影响. 物理学报, 2024, 73(8): 083201. doi: 10.7498/aps.73.20240016
    [3] 胡杨, 罗婧怡, 蔡雨烟, 卢新培. 外加磁场对螺旋等离子体的影响. 物理学报, 2023, 72(13): 130501. doi: 10.7498/aps.72.20222442
    [4] 王倩, 赵江山, 范元媛, 郭馨, 周翊. 不同缓冲气体中ArF准分子激光系统放电特性分析. 物理学报, 2020, 69(17): 174207. doi: 10.7498/aps.69.20200087
    [5] 吴金芳, 陈兆权, 张明, 张煌, 张三阳, 冯德仁, 周郁明. 微波瑞利散射法测定空气电火花激波等离子体射流的时变电子密度. 物理学报, 2020, 69(7): 075202. doi: 10.7498/aps.69.20191909
    [6] 王伟民, 张亮亮, 李玉同, 盛政明, 张杰. 激光在大气中驱动的强太赫兹辐射的理论和实验研究. 物理学报, 2018, 67(12): 124202. doi: 10.7498/aps.67.20180564
    [7] 李晗蔚, 孙安邦, 张幸, 姚聪伟, 常正实, 张冠军. 针-板空气间隙流注放电起始过程的三维PIC/MCC仿真研究. 物理学报, 2018, 67(4): 045101. doi: 10.7498/aps.67.20172309
    [8] 戚晓秋, 汪峰, 戴长建. 碱金属原子的光激发与光电离. 物理学报, 2015, 64(13): 133201. doi: 10.7498/aps.64.133201
    [9] 单晓斌, 赵玉杰, 孔蕊弘, 王思胜, 盛六四, 黄明强, 王振亚. ArCO团簇光电离的实验和理论研究. 物理学报, 2013, 62(5): 053602. doi: 10.7498/aps.62.053602
    [10] 李元, 穆海宝, 邓军波, 张冠军, 王曙鸿. 正极性纳秒脉冲电压下变压器油中流注放电仿真研究. 物理学报, 2013, 62(12): 124703. doi: 10.7498/aps.62.124703
    [11] 孙长平, 王国利, 周效信. F3+和Ne4+离子的光电离截面的理论计算. 物理学报, 2011, 60(5): 053202. doi: 10.7498/aps.60.053202
    [12] 郭卿超, 张家良, 刘莉莹, 王德真. 大气压Ar射频容性放电模式转变的温度表征. 物理学报, 2011, 60(2): 025207. doi: 10.7498/aps.60.025207
    [13] 黄文同, 李寿哲, 王德真, 马腾才. 大气压下绝缘毛细管内等离子体放电及其特性研究. 物理学报, 2010, 59(6): 4110-4116. doi: 10.7498/aps.59.4110
    [14] 王向丽, 董晨钟, 桑萃萃. Ne原子的1s光电离及其Auger衰变过程的理论研究. 物理学报, 2009, 58(8): 5297-5303. doi: 10.7498/aps.58.5297
    [15] 张先徽, 黄骏, 刘筱娣, 彭磊, 孙岳, 陈维, 冯克成, 杨思泽. 大气条件等离子体针处理Enterococcus faecalis菌. 物理学报, 2009, 58(3): 1595-1602. doi: 10.7498/aps.58.1595
    [16] 黄超群, 卫立夏, 杨 斌, 杨 锐, 王思胜, 单晓斌, 齐 飞, 张允武, 盛六四, 郝立庆, 周士康, 王振亚. HFC-152a的同步辐射真空紫外光电离和光解离研究. 物理学报, 2006, 55(3): 1083-1088. doi: 10.7498/aps.55.1083
    [17] 王思胜, 孔蕊弘, 田振玉, 单晓斌, 张允武, 盛六四, 王振亚, 郝立庆, 周士康. Ar?NO团簇的同步辐射光电离研究. 物理学报, 2006, 55(7): 3433-3437. doi: 10.7498/aps.55.3433
    [18] 谢国锋, 王德武, 应纯同. 考虑溅射损失的RF共振法离子引出和收集. 物理学报, 2005, 54(5): 2147-2152. doi: 10.7498/aps.54.2147
    [19] 方泉玉, 李萍, 刘勇, 邹宇, 邱玉波. Alq+(q=0—12)的光电离截面和Bethe系数. 物理学报, 2001, 50(4): 655-659. doi: 10.7498/aps.50.655
    [20] 熊家贵, 王德武. 离子引出的二维PIC-MCC模拟. 物理学报, 2000, 49(12): 2420-2426. doi: 10.7498/aps.49.2420
计量
  • 文章访问数:  8598
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-11
  • 修回日期:  2019-02-26
  • 上网日期:  2019-05-01
  • 刊出日期:  2019-05-05

/

返回文章
返回