搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氦原子贝塞尔涡旋光电离的理论研究

赵婷 宫毛毛 张松斌

引用本文:
Citation:

氦原子贝塞尔涡旋光电离的理论研究

赵婷, 宫毛毛, 张松斌

Theoretical study on photo-ionization of helium atoms by Bessel vortex light

Zhao Ting, Gong Maomao, Zhang Song Bin
PDF
HTML
导出引用
  • 涡旋光携带额外的轨道角动量, 在与原子分子相互作用时能揭示更深层次的动力学信息. 本文基于一阶Born近似构建了涡旋光电离原子分子的理论计算框架, 并以氦原子为例进行详细计算和分析. 系统地研究了涡旋光引起的光电离截面如何随入射能量及光电子发射角度变化, 特别分析了位于涡旋光中心相位奇点的电离现象, 揭示了涡旋光在引发光电离过程中的独特行为模式, 为进一步研究涡旋光电离过程及其应用奠定了一定的理论基础.
    Owing to vortex light possessing the additional orbital angular momentum, its interaction with atoms and molecules can reveal in more depth insights into dynamics than the plane wave light. This paper aims to establish a theoretical framework for the photoionization of atoms and molecules by vortex light. In the case of macroscopic gas target, helium atoms are randomly dispersed around the entire region of the Bessel vortex beam. The final photoionization cross-section is not dependent on the angular momentum of the vortex light; on the contrary, it depends on the opening angle of the Bessel vortex light. This paper systematically compute the variation of photoionization cross-section with photon energy and the angular distributions of photoelectrons under different geometric conditions. The computation results demonstrate that there is a significant difference in the photo-ionization cross-section between vortex light and plane wave light. In order to further investigate the characteristics of the phase singularity of the vortex light (when the light intensity reaches zero), this paper further calculates the photo-ionization of the vortex light with opening angles of 5°, 30°, and 60° at the phase singularity, respectively. The research results indicate that the angular distribution of photoelectrons at these three angles is significantly dependent on the orbital angular momentum and the opening angle of the vortex light, and the calculated absolute cross-section does not equate to zero. This represents an important distinguishing feature of the Bessel vortex light when interacting with atoms, distinguishing it from the plane wave. This work lays the foundation for further studying vortex light photo-ionization and their applications.
  • 图 1  贝塞尔涡旋光束入射原子靶的示意图, 其中碰撞参数为 $ {{\boldsymbol{b}}} $ [在笛卡尔坐标系中表示为 ($ b_x $, $ b_y $), 在极坐标系中表示为 (b, $ \phi_b $)], 定义于 $ xy $ 平面内. 分子的取向通过极角 $ \theta_m $ 和方位角 $ \phi_m $ 来描述. 发射光电子的立体角则由 $ \theta_{{\mathrm{e}}} $和$ \phi_{{\mathrm{e}}} $ 表示(图中未显示)

    Fig. 1.  Overview of the twist Bessel light incidents on a molecular target with impact parameter $ {{\boldsymbol{b}}} $ [($ b_x $, $ b_y $) in Cartesian coordinate or (b, $ \phi_b $) in polar coordinate], defined in $ xy $ plane. Molecular orientation is defined by polar angle $ \theta_m $ and azimuthal angle $ \phi_m $. The solid angle of the emitted photoelectron is described by $ \theta_{{\mathrm{e}}} $ and $ \phi_{{\mathrm{e}}} $ (not shown in the image).

    图 2  光电离截面随光子能量的变化 (a) $ \theta_{{\mathrm{e}}} = 1^\circ $, $ \phi_{{\mathrm{e}}} = 0^\circ $; (b) $ \theta_{{\mathrm{e}}} = 10^\circ $, $ \phi_{{\mathrm{e}}} = 0^\circ $; (c) $ \theta_{{\mathrm{e}}} = 90^\circ $, $ \phi_{{\mathrm{e}}} = 90^\circ $分别代表电子探测器的不同位置

    Fig. 2.  Photoionization cross section as function of photon energy detected at different ejected angles: (a) $ \theta_{{\mathrm{e}}} = 1^\circ $, $ \phi_{{\mathrm{e}}} = 0^\circ $; (b) $ \theta_{{\mathrm{e}}} = 10^\circ $, $ \phi_{{\mathrm{e}}} = 0^\circ $; (c) $ \theta_{{\mathrm{e}}} = 90^\circ $, $ \phi_{{\mathrm{e}}} = 90^\circ $.

    图 3  光子能量分别为(a) 1000 eV, (b) 10000 eV, 在$ xz $平面的光电离截面角分布; 光子能量分别为(c)1000 eV, (d) 10000 eV, 在$ xy $平面的光电离截面角分布

    Fig. 3.  The angular distribution of the photoionization cross section (a) and (b) in $ xz $ plane, and the corresponding photon energies are 1000 eV and 10000 eV, respectively; (c) and (d) are the photoionization cross section in $ xy $ plane, corresponding to photon energies of 1000 eV and 10000 eV, respectively.

    图 4  不同开放角和不同TAM $ m_{\gamma} $下的涡旋光诱导的光电离截面在$ xz $平面的角分布, 光子能量为1000 eV. 图中三列分别代表涡旋光开放角为5°, 30°, 和60°, 五行代表不同的TAM $ m_{\gamma} $取值2, 1, 0, –1, –2

    Fig. 4.  The angular distribution of photoionization cross sections with different opening angles and TAM with photon energy of 1000 eV. The opening angles of the three columns are 5°, 30°, and 60°, respectively. The five rows represent different TAM values, which are 2, 1, 0, –1, –2, respectively.

  • [1]

    Torres J P, Torner L 2011 Twisted Photons: Application of Light with Orbital Angular Momentum (Wiley

    [2]

    Andrews D, Babiker M 2013 The Angular Momentum of Light (Cambridge Univ. Press

    [3]

    Yao A M, Padgett M J 2011 Adv. Opt. Photon. 3 161Google Scholar

    [4]

    Babiker M, Bennett C R, Andrews D L, Dávila Romero L C 2002 Phys. Rev. Lett. 89 143601

    [5]

    Surzhykov A, Seipt D, Fritzsche S 2016 Phys. Rev. A 94 033420Google Scholar

    [6]

    Franke-Arnold S, Allen L, Padgett M 2008 Laser & Photonics Reviews 2 299

    [7]

    Andersen M F, Ryu C, Cladé P, Natarajan V, Vaziri A, Helmerson K, Phillips W D 2006 Phys. Rev. Lett. 97 170406Google Scholar

    [8]

    He H, Friese M E J, Heckenberg N R, Rubinsztein-Dunlop H 1995 Phys. Rev. Lett. 75 826Google Scholar

    [9]

    Afanasev A, Carlson C E, Mukherjee A 2013 Phys. Rev. A 88 033841

    [10]

    Yao A M, Padgett M J 2011 Adv. Opt. Photon. 3 161Google Scholar

    [11]

    Afanasev A, Carlson C E, Solyanik M 2017 Journal of Optics 19 105401Google Scholar

    [12]

    Alharbi A, Lyras A, Lembessis V E, Al-Dossary O 2023 Results in Physics 46 106311Google Scholar

    [13]

    Peshkov A A, Bidasyuk Y M, Lange R, Huntemann N, Peik E, Surzhykov A 2023 Phys. Rev. A 107 023106Google Scholar

    [14]

    Schmiegelow C T, Schulz J, Kaufmann H, Ruster T, Poschinger U G, Schmidt-Kaler F 2016 Nature Communications 7 12998

    [15]

    Picón A, Mompart J, de Aldana J R V, Plaja L, Calvo G F, Roso L 2010 Opt. Express 18 3660Google Scholar

    [16]

    Wätzel J, Berakdar J 2016 Phys. Rev. A 94 033414

    [17]

    Matula O, Hayrapetyan A G, Serbo V G, Surzhykov A, Fritzsche S 2013 Journal of Physics B: Atomic, Molecular and Optical Physics 46 205002Google Scholar

    [18]

    Peshkov A A, Fritzsche S, Surzhykov A 2015 Phys. Rev. A 92 043415Google Scholar

    [19]

    Kiselev M D, Gryzlova E V, Grum-Grzhimailo A N 2023 Phys. Rev. A 108 023117Google Scholar

    [20]

    De Ninno G, Wätzel J, Ribič P R, Allaria E, Coreno M, Danailov M B, David C, Demidovich A, Di Fraia M, Giannessi L, Hansen K, Krušič Š, Manfredda M, Meyer M, Mihelič A, Mirian N, Plekan O, Ressel B, Rösner B, Simoncig A, Spampinati S, Stupar M, Žitnik M, Zangrando M, Callegari C, Berakdar J 2020 Nature Photonics 14 554

    [21]

    Davis B S, Kaplan L, McGuire J H 2013 Journal of Optics 15 035403Google Scholar

    [22]

    Jentschura U D, Serbo V G 2011 Phys. Rev. Lett. 106 013001

    [23]

    Picón A, Benseny A, Mompart J, de Aldana J R V, Plaja L, Calvo G F, Roso L 2010 New Journal of Physics 12 083053Google Scholar

    [24]

    Rouxel J R, Rösner B, Karpov D, Bacellar C, Mancini G F, Zinna F, Kinschel D, Cannelli O, Oppermann M, Svetina C, Diaz A, Lacour J, David C, Chergui M 2022 Nature Photonics 16 570Google Scholar

    [25]

    Bégin J L, Jain A, Parks A, Hufnagel F, Corkum P, Karimi E, Brabec T, Bhardwaj R 2023 Nature Photonics 17 82Google Scholar

    [26]

    Li X, Hu C, Tian Y, Liu Y, Chen H, Xu Y, Lu M H, Fu Y 2023 Science Bulletin 68 2555

    [27]

    Fanciulli M, Pancaldi M, Pedersoli E, Vimal M, Bresteau D, Luttmann M, De Angelis D, Ribič P c v R, Rösner B, David C, Spezzani C, Manfredda M, Sousa R, Prejbeanu I L, Vila L, Dieny B, De Ninno G, Capotondi F, Sacchi M, Ruchon T 2022 Phys. Rev. Lett. 128 077401Google Scholar

    [28]

    Brullot W, Vanbel M K, Swusten T, Verbiest T 2016 Science Advances 2 e1501349Google Scholar

    [29]

    Forbes K A, Andrews D L 2018 Opt. Lett. 43 435

    [30]

    Ye L, Rouxel J R, Asban S, Rösner B, Mukamel S 2019 Journal of Chemical Theory and Computation 15 4180Google Scholar

    [31]

    Kerber R M, Fitzgerald J M, Oh S S, Reiter D E, Hess O 2018 Communications Physics 1 87Google Scholar

    [32]

    Forbes K A, Jones G A 2021 Phys. Rev. A 103 053515Google Scholar

    [33]

    Cooper J W 1993 Phys. Rev. A 47 1841

    [34]

    Scholz-Marggraf H M, Fritzsche S, Serbo V G, Afanasev A, Surzhykov A 2014 Phys. Rev. A 90 013425Google Scholar

    [35]

    Brumboiu I E, Eriksson O, Norman P 2019 The Journal of Chemical Physics 150 044306Google Scholar

    [36]

    Waitz M, Bello R Y, Metz D, Lower J, Trinter F, Schober C, Keiling M, Lenz U, Pitzer M, Mertens K, Martins M, Viefhaus J, Klumpp S, Weber T, Schmidt L P H, Williams J B, Schöffler M S, Serov V V, Kheifets A S, Argenti L, Palacios A, Martín F, Jahnke T, Dörner R 2017 Nature Communications 8 2266Google Scholar

    [37]

    Ivanov I P, Serbo V G 2011 Phys. Rev. A 84 033804Google Scholar

    [38]

    Gong M, Cheng Y, Zhang S B, Chen X 2022 Phys. Rev. A 106 012818Google Scholar

    [39]

    Varshalovich D A, Moskalev A N, Khersonskii V K 1988 Quantum Theory of Angular Momentum (WORLD SCIENTIFIC

    [40]

    Ivanov V K, Chaikovskaia A D, Karlovets D V 2023 Phys. Rev. A 108 062803

    [41]

    Duan J, Gong M, Cheng Y, Zhang S B 2024 Phys. Rev. A 109 063114Google Scholar

    [42]

    Becke A D 1993 J. Chem. Phys. 98 5648Google Scholar

    [43]

    Lee C, Yang W, Parr R G 1988 Phys. Rev. B 37 785Google Scholar

    [44]

    Jr T H D 1989 J. Chem. Phys. 90 1007

    [45]

    Sanna N, Baccarelli I, Morelli G 2009 Comput. Phys. Commun. 180 2544Google Scholar

  • [1] 戈迪, 赵国鹏, 祁月盈, 陈晨, 高俊文, 侯红生. 等离子体环境中相对论效应对类氢离子光电离过程的影响. 物理学报, doi: 10.7498/aps.73.20240016
    [2] 杨鑫宇, 叶华朋, 李佩芸, 廖鹤麟, 袁冬, 周国富. 小型化涡旋光模式解复用器: 原理、制备及应用. 物理学报, doi: 10.7498/aps.72.20231521
    [3] 雷建廷, 余璇, 史国强, 闫顺成, 孙少华, 王全军, 丁宝卫, 马新文, 张少锋, 丁晶洁. 基于极紫外光的Ne, Xe原子电离. 物理学报, doi: 10.7498/aps.71.20220341
    [4] 马堃, 朱林繁, 颉录有. Ar原子和K+离子序列双光双电离光电子角分布的非偶极效应. 物理学报, doi: 10.7498/aps.71.20211905
    [5] 陈天宇, 王长顺, 潘雨佳, 孙丽丽. 利用全息法在偶氮聚合物薄膜中记录涡旋光场. 物理学报, doi: 10.7498/aps.70.20201496
    [6] 柳钰, 徐忠锋, 王兴, 胡鹏飞, 张小安. 光子碰撞Au靶产生L系特征X射线角分布. 物理学报, doi: 10.7498/aps.69.20191977
    [7] 柳钰, 徐忠锋, 王兴, 曾利霞, 刘婷. 光电离过程中Fe靶和V靶特征辐射的角相关研究. 物理学报, doi: 10.7498/aps.69.20191524
    [8] 马堃, 颉录有, 董晨钟. Ar原子序列双光双电离产生光电子角分布的理论计算. 物理学报, doi: 10.7498/aps.69.20191814
    [9] 涂婧怡, 陈赦, 汪沨. 光电离速率影响大气压空气正流注分支的机理研究. 物理学报, doi: 10.7498/aps.68.20190060
    [10] 张羚翔, 魏薇, 张志明, 廖文英, 杨振国, 范万德, 李乙钢. 环形光子晶体光纤中涡旋光的传输特性研究. 物理学报, doi: 10.7498/aps.66.014205
    [11] 马堃, 颉录有, 张登红, 蒋军, 董晨钟. 类钠离子光电子角分布的非偶极效应. 物理学报, doi: 10.7498/aps.66.043201
    [12] 戚晓秋, 汪峰, 戴长建. 碱金属原子的光激发与光电离. 物理学报, doi: 10.7498/aps.64.133201
    [13] 赵延霆, 元晋鹏, 姬中华, 李中豪, 孟腾飞, 刘涛, 肖连团, 贾锁堂. 光缔合制备超冷铯分子的温度测量. 物理学报, doi: 10.7498/aps.63.193701
    [14] 单晓斌, 赵玉杰, 孔蕊弘, 王思胜, 盛六四, 黄明强, 王振亚. ArCO团簇光电离的实验和理论研究. 物理学报, doi: 10.7498/aps.62.053602
    [15] 孙长平, 王国利, 周效信. F3+和Ne4+离子的光电离截面的理论计算. 物理学报, doi: 10.7498/aps.60.053202
    [16] 王向丽, 董晨钟, 桑萃萃. Ne原子的1s光电离及其Auger衰变过程的理论研究. 物理学报, doi: 10.7498/aps.58.5297
    [17] 刘凌涛, 王民盛, 韩小英, 李家明. 溴的光电离和辐射复合——平均原子模型速率系数与细致组态速率系数. 物理学报, doi: 10.7498/aps.55.2322
    [18] 黄超群, 卫立夏, 杨 斌, 杨 锐, 王思胜, 单晓斌, 齐 飞, 张允武, 盛六四, 郝立庆, 周士康, 王振亚. HFC-152a的同步辐射真空紫外光电离和光解离研究. 物理学报, doi: 10.7498/aps.55.1083
    [19] 王思胜, 孔蕊弘, 田振玉, 单晓斌, 张允武, 盛六四, 王振亚, 郝立庆, 周士康. Ar?NO团簇的同步辐射光电离研究. 物理学报, doi: 10.7498/aps.55.3433
    [20] 方泉玉, 李萍, 刘勇, 邹宇, 邱玉波. Alq+(q=0—12)的光电离截面和Bethe系数. 物理学报, doi: 10.7498/aps.50.655
计量
  • 文章访问数:  246
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 上网日期:  2024-11-13

/

返回文章
返回