-
Due to the additional orbital angular momentum possessed by vortex light, its interaction with atoms and molecules can unveil deeper dynamical insights compared to those obtained with plane wave light. This paper aims to establish a theoretical framework for the photoionization of atoms and molecules by vortex light. In the context of macroscopic gas targets, helium atoms are randomly dispersed in the vicinity of the entire expanse of the Bessel vortex beam. The ultimate photoionization cross-section is not contingent upon the angular momentum of the vortex light; instead, it hinges on the opening angle of the Bessel vortex light. This paper undertakes a systematic computation of the variation pattern of the photoionization cross-section with respect to photon energy, as well as the angular distribution of photoelectrons under diverse geometric conditions. The computed results demonstrate that the photoionization cross-section of the vortex light differs markedly from that of the plane wave light. To delve deeper into the characteristics of the phase singularity (where the light intensity reaches zero) of the vortex light, this paper further calculates the photoionization at the phase singularity of the vortex light with opening angles of 5°, 30°, and 60° respectively. The research findings reveal that the angular distribution of photoelectrons at this juncture is significantly reliant on both the orbital angular momentum and the opening angle of the vortex light, and the calculated absolute cross-section does not equate to zero. This represents an important distinguishing feature of the Bessel vortex light when it interacts with atoms, setting it apart from the plane wave. This work lays the groundwork for further studies on vortex light photoionization and their applications.
-
[1] Torres J P, Torner L 2011 Twisted Photons: Application of Light with Orbital Angular Momentum (Wiley)
[2] Andrews D, Babiker M 2013 The Angular Momentum of Light (Cambridge Univ. Press)
[3] Yao A M, Padgett M J 2011 Adv. Opt. Photon. 3 161
[4] Babiker M, Bennett C R, Andrews D L, Dávila Romero L C 2002 Phys. Rev. Lett. 89 143601
[5] Surzhykov A, Seipt D, Fritzsche S 2016 Phys. Rev. A 94 033420
[6] Franke-Arnold S, Allen L, Padgett M 2008 Laser & Photonics Reviews 2 299
[7] Andersen M F, Ryu C, Cladé P, Natarajan V, Vaziri A, Helmerson K, Phillips W D 2006 Phys. Rev. Lett. 97 170406
[8] He H, Friese M E J, Heckenberg N R, Rubinsztein-Dunlop H 1995 Phys. Rev. Lett. 75 826
[9] Afanasev A, Carlson C E, Mukherjee A 2013 Phys. Rev. A 88 033841
[10] Yao A M, Padgett M J 2011 Adv. Opt. Photon. 3 161
[11] Afanasev A, Carlson C E, Solyanik M 2017 Journal of Optics 19 105401
[12] Alharbi A, Lyras A, Lembessis V E, Al-Dossary O 2023 Results in Physics 46 106311
[13] Peshkov A A, Bidasyuk Y M, Lange R, Huntemann N, Peik E, Surzhykov A 2023 Phys. Rev. A 107 023106
[14] Schmiegelow C T, Schulz J, Kaufmann H, Ruster T, Poschinger U G, Schmidt-Kaler F 2016 Nature Communications 7 12998
[15] Picón A, Mompart J, de Aldana J R V, Plaja L, Calvo G F, Roso L 2010 Opt. Express 18 3660
[16] Wätzel J, Berakdar J 2016 Phys. Rev. A 94 033414
[17] Matula O, Hayrapetyan A G, Serbo V G, Surzhykov A, Fritzsche S 2013 Journal of Physics B: Atomic, Molecular and Optical Physics 46 205002
[18] Peshkov A A, Fritzsche S, Surzhykov A 2015 Phys. Rev. A 92 043415
[19] Kiselev M D, Gryzlova E V, Grum-Grzhimailo A N 2023 Phys. Rev. A 108 023117
[20] De Ninno G, Wätzel J, Ribič P R, Allaria E, Coreno M, Danailov M B, David C, Demidovich A, Di Fraia M, Giannessi L, Hansen K, Krušič Š, Manfredda M, Meyer M, Mihelič A, Mirian N, Plekan O, Ressel B, Rösner B, Simoncig A, Spampinati S, Stupar M, Žitnik M, Zangrando M, Callegari C, Berakdar J 2020 Nature Photonics 14 554
[21] Davis B S, Kaplan L, McGuire J H 2013 Journal of Optics 15 035403
[22] Jentschura U D, Serbo V G 2011 Phys. Rev. Lett. 106 013001
[23] Picón A, Benseny A, Mompart J, de Aldana J R V, Plaja L, Calvo G F, Roso L 2010 New Journal of Physics 12 083053
[24] Rouxel J R, Rösner B, Karpov D, Bacellar C, Mancini G F, Zinna F, Kinschel D, Cannelli O, Oppermann M, Svetina C, Diaz A, Lacour J, David C, Chergui M 2022 Nature Photonics 16 570
[25] Bégin J L, Jain A, Parks A, Hufnagel F, Corkum P, Karimi E, Brabec T, Bhardwaj R 2023 Nature Photonics 17 82
[26] Li X, Hu C, Tian Y, Liu Y, Chen H, Xu Y, Lu M H, Fu Y 2023 Science Bulletin 68 2555
[27] Fanciulli M, Pancaldi M, Pedersoli E, Vimal M, Bresteau D, Luttmann M, De Angelis D, Ribič P c v R, Rösner B, David C, Spezzani C, Manfredda M, Sousa R, Prejbeanu I L, Vila L, Dieny B, De Ninno G, Capotondi F, Sacchi M, Ruchon T 2022 Phys. Rev. Lett. 128 077401
[28] Brullot W, Vanbel M K, Swusten T, Verbiest T 2016 Science Advances 2 e1501349
[29] Forbes K A, Andrews D L 2018 Opt. Lett. 43 435
[30] Ye L, Rouxel J R, Asban S, Rösner B, Mukamel S 2019 Journal of Chemical Theory and Computation 15 4180
[31] Kerber R M, Fitzgerald J M, Oh S S, Reiter D E, Hess O 2018 Communications Physics 1 87
[32] Forbes K A, Jones G A 2021 Phys. Rev. A 103 053515
[33] Cooper J W 1993 Phys. Rev. A 47 1841
[34] Scholz-Marggraf H M, Fritzsche S, Serbo V G, Afanasev A, Surzhykov A 2014 Phys. Rev. A 90 013425
[35] Brumboiu I E, Eriksson O, Norman P 2019 The Journal of Chemical Physics 150 044306
[36] Waitz M, Bello R Y, Metz D, Lower J, Trinter F, Schober C, Keiling M, Lenz U, Pitzer M, Mertens K, Martins M, Viefhaus J, Klumpp S, Weber T, Schmidt L P H, Williams J B, Schöffler M S, Serov V V, Kheifets A S, Argenti L, Palacios A, Martín F, Jahnke T, Dörner R 2017 Nature Communications 8
[37] Ivanov I P, Serbo V G 2011 Phys. Rev. A 84 033804
[38] Gong M, Cheng Y, Zhang S B, Chen X 2022 Phys. Rev. A 106 012818
[39] Varshalovich D A, Moskalev A N, Khersonskii V K 1988 Quantum Theory of Angular Momentum (WORLD SCIENTIFIC)
[40] Ivanov V K, Chaikovskaia A D, Karlovets D V 2023 Phys. Rev. A 108 062803
[41] Duan J, Gong M, Cheng Y, Zhang S B 2024 Phys. Rev. A 109 063114
[42] Becke A D 1993 J. Chem. Phys. 98 5648
[43] Lee C, Yang W, Parr R G 1988 Phys. Rev. B 37 785
[44] Jr T H D 1989 J. Chem. Phys. 90 1007
[45] Sanna N, Baccarelli I, Morelli G 2009 Comput. Phys. Commun. 180 2544
计量
- 文章访问数: 37
- PDF下载量: 3
- 被引次数: 0