-
Owing to vortex light possessing the additional orbital angular momentum, its interaction with atoms and molecules can reveal in more depth insights into dynamics than the plane wave light. This paper aims to establish a theoretical framework for the photoionization of atoms and molecules by vortex light. In the case of macroscopic gas target, helium atoms are randomly dispersed around the entire region of the Bessel vortex beam. The final photoionization cross-section is not dependent on the angular momentum of the vortex light; on the contrary, it depends on the opening angle of the Bessel vortex light. This paper systematically compute the variation of photoionization cross-section with photon energy and the angular distributions of photoelectrons under different geometric conditions. The computation results demonstrate that there is a significant difference in the photo-ionization cross-section between vortex light and plane wave light. In order to further investigate the characteristics of the phase singularity of the vortex light (when the light intensity reaches zero), this paper further calculates the photo-ionization of the vortex light with opening angles of 5°, 30°, and 60° at the phase singularity, respectively. The research results indicate that the angular distribution of photoelectrons at these three angles is significantly dependent on the orbital angular momentum and the opening angle of the vortex light, and the calculated absolute cross-section does not equate to zero. This represents an important distinguishing feature of the Bessel vortex light when interacting with atoms, distinguishing it from the plane wave. This work lays the foundation for further studying vortex light photo-ionization and their applications.
-
图 1 贝塞尔涡旋光束入射原子靶的示意图, 其中碰撞参数为 $ {{\boldsymbol{b}}} $ [在笛卡尔坐标系中表示为 ($ b_x $, $ b_y $), 在极坐标系中表示为 (b, $ \phi_b $)], 定义于 $ xy $ 平面内. 分子的取向通过极角 $ \theta_m $ 和方位角 $ \phi_m $ 来描述. 发射光电子的立体角则由 $ \theta_{{\mathrm{e}}} $和$ \phi_{{\mathrm{e}}} $ 表示(图中未显示)
Fig. 1. Overview of the twist Bessel light incidents on a molecular target with impact parameter $ {{\boldsymbol{b}}} $ [($ b_x $, $ b_y $) in Cartesian coordinate or (b, $ \phi_b $) in polar coordinate], defined in $ xy $ plane. Molecular orientation is defined by polar angle $ \theta_m $ and azimuthal angle $ \phi_m $. The solid angle of the emitted photoelectron is described by $ \theta_{{\mathrm{e}}} $ and $ \phi_{{\mathrm{e}}} $ (not shown in the image).
图 2 光电离截面随光子能量的变化 (a) $ \theta_{{\mathrm{e}}} = 1^\circ $, $ \phi_{{\mathrm{e}}} = 0^\circ $; (b) $ \theta_{{\mathrm{e}}} = 10^\circ $, $ \phi_{{\mathrm{e}}} = 0^\circ $; (c) $ \theta_{{\mathrm{e}}} = 90^\circ $, $ \phi_{{\mathrm{e}}} = 90^\circ $分别代表电子探测器的不同位置
Fig. 2. Photoionization cross section as function of photon energy detected at different ejected angles: (a) $ \theta_{{\mathrm{e}}} = 1^\circ $, $ \phi_{{\mathrm{e}}} = 0^\circ $; (b) $ \theta_{{\mathrm{e}}} = 10^\circ $, $ \phi_{{\mathrm{e}}} = 0^\circ $; (c) $ \theta_{{\mathrm{e}}} = 90^\circ $, $ \phi_{{\mathrm{e}}} = 90^\circ $.
图 3 光子能量分别为(a) 1000 eV, (b) 10000 eV, 在$ xz $平面的光电离截面角分布; 光子能量分别为(c)1000 eV, (d) 10000 eV, 在$ xy $平面的光电离截面角分布
Fig. 3. The angular distribution of the photoionization cross section (a) and (b) in $ xz $ plane, and the corresponding photon energies are 1000 eV and 10000 eV, respectively; (c) and (d) are the photoionization cross section in $ xy $ plane, corresponding to photon energies of 1000 eV and 10000 eV, respectively.
图 4 不同开放角和不同TAM $ m_{\gamma} $下的涡旋光诱导的光电离截面在$ xz $平面的角分布, 光子能量为1000 eV. 图中三列分别代表涡旋光开放角为5°, 30°, 和60°, 五行代表不同的TAM $ m_{\gamma} $取值2, 1, 0, –1, –2
Fig. 4. The angular distribution of photoionization cross sections with different opening angles and TAM with photon energy of 1000 eV. The opening angles of the three columns are 5°, 30°, and 60°, respectively. The five rows represent different TAM values, which are 2, 1, 0, –1, –2, respectively.
-
[1] Torres J P, Torner L 2011 Twisted Photons: Application of Light with Orbital Angular Momentum (Wiley
[2] Andrews D, Babiker M 2013 The Angular Momentum of Light (Cambridge Univ. Press
[3] Yao A M, Padgett M J 2011 Adv. Opt. Photon. 3 161Google Scholar
[4] Babiker M, Bennett C R, Andrews D L, Dávila Romero L C 2002 Phys. Rev. Lett. 89 143601
[5] Surzhykov A, Seipt D, Fritzsche S 2016 Phys. Rev. A 94 033420Google Scholar
[6] Franke-Arnold S, Allen L, Padgett M 2008 Laser & Photonics Reviews 2 299
[7] Andersen M F, Ryu C, Cladé P, Natarajan V, Vaziri A, Helmerson K, Phillips W D 2006 Phys. Rev. Lett. 97 170406Google Scholar
[8] He H, Friese M E J, Heckenberg N R, Rubinsztein-Dunlop H 1995 Phys. Rev. Lett. 75 826Google Scholar
[9] Afanasev A, Carlson C E, Mukherjee A 2013 Phys. Rev. A 88 033841
[10] Yao A M, Padgett M J 2011 Adv. Opt. Photon. 3 161Google Scholar
[11] Afanasev A, Carlson C E, Solyanik M 2017 Journal of Optics 19 105401Google Scholar
[12] Alharbi A, Lyras A, Lembessis V E, Al-Dossary O 2023 Results in Physics 46 106311Google Scholar
[13] Peshkov A A, Bidasyuk Y M, Lange R, Huntemann N, Peik E, Surzhykov A 2023 Phys. Rev. A 107 023106Google Scholar
[14] Schmiegelow C T, Schulz J, Kaufmann H, Ruster T, Poschinger U G, Schmidt-Kaler F 2016 Nature Communications 7 12998
[15] Picón A, Mompart J, de Aldana J R V, Plaja L, Calvo G F, Roso L 2010 Opt. Express 18 3660Google Scholar
[16] Wätzel J, Berakdar J 2016 Phys. Rev. A 94 033414
[17] Matula O, Hayrapetyan A G, Serbo V G, Surzhykov A, Fritzsche S 2013 Journal of Physics B: Atomic, Molecular and Optical Physics 46 205002Google Scholar
[18] Peshkov A A, Fritzsche S, Surzhykov A 2015 Phys. Rev. A 92 043415Google Scholar
[19] Kiselev M D, Gryzlova E V, Grum-Grzhimailo A N 2023 Phys. Rev. A 108 023117Google Scholar
[20] De Ninno G, Wätzel J, Ribič P R, Allaria E, Coreno M, Danailov M B, David C, Demidovich A, Di Fraia M, Giannessi L, Hansen K, Krušič Š, Manfredda M, Meyer M, Mihelič A, Mirian N, Plekan O, Ressel B, Rösner B, Simoncig A, Spampinati S, Stupar M, Žitnik M, Zangrando M, Callegari C, Berakdar J 2020 Nature Photonics 14 554
[21] Davis B S, Kaplan L, McGuire J H 2013 Journal of Optics 15 035403Google Scholar
[22] Jentschura U D, Serbo V G 2011 Phys. Rev. Lett. 106 013001
[23] Picón A, Benseny A, Mompart J, de Aldana J R V, Plaja L, Calvo G F, Roso L 2010 New Journal of Physics 12 083053Google Scholar
[24] Rouxel J R, Rösner B, Karpov D, Bacellar C, Mancini G F, Zinna F, Kinschel D, Cannelli O, Oppermann M, Svetina C, Diaz A, Lacour J, David C, Chergui M 2022 Nature Photonics 16 570Google Scholar
[25] Bégin J L, Jain A, Parks A, Hufnagel F, Corkum P, Karimi E, Brabec T, Bhardwaj R 2023 Nature Photonics 17 82Google Scholar
[26] Li X, Hu C, Tian Y, Liu Y, Chen H, Xu Y, Lu M H, Fu Y 2023 Science Bulletin 68 2555
[27] Fanciulli M, Pancaldi M, Pedersoli E, Vimal M, Bresteau D, Luttmann M, De Angelis D, Ribič P c v R, Rösner B, David C, Spezzani C, Manfredda M, Sousa R, Prejbeanu I L, Vila L, Dieny B, De Ninno G, Capotondi F, Sacchi M, Ruchon T 2022 Phys. Rev. Lett. 128 077401Google Scholar
[28] Brullot W, Vanbel M K, Swusten T, Verbiest T 2016 Science Advances 2 e1501349Google Scholar
[29] Forbes K A, Andrews D L 2018 Opt. Lett. 43 435
[30] Ye L, Rouxel J R, Asban S, Rösner B, Mukamel S 2019 Journal of Chemical Theory and Computation 15 4180Google Scholar
[31] Kerber R M, Fitzgerald J M, Oh S S, Reiter D E, Hess O 2018 Communications Physics 1 87Google Scholar
[32] Forbes K A, Jones G A 2021 Phys. Rev. A 103 053515Google Scholar
[33] Cooper J W 1993 Phys. Rev. A 47 1841
[34] Scholz-Marggraf H M, Fritzsche S, Serbo V G, Afanasev A, Surzhykov A 2014 Phys. Rev. A 90 013425Google Scholar
[35] Brumboiu I E, Eriksson O, Norman P 2019 The Journal of Chemical Physics 150 044306Google Scholar
[36] Waitz M, Bello R Y, Metz D, Lower J, Trinter F, Schober C, Keiling M, Lenz U, Pitzer M, Mertens K, Martins M, Viefhaus J, Klumpp S, Weber T, Schmidt L P H, Williams J B, Schöffler M S, Serov V V, Kheifets A S, Argenti L, Palacios A, Martín F, Jahnke T, Dörner R 2017 Nature Communications 8 2266Google Scholar
[37] Ivanov I P, Serbo V G 2011 Phys. Rev. A 84 033804Google Scholar
[38] Gong M, Cheng Y, Zhang S B, Chen X 2022 Phys. Rev. A 106 012818Google Scholar
[39] Varshalovich D A, Moskalev A N, Khersonskii V K 1988 Quantum Theory of Angular Momentum (WORLD SCIENTIFIC
[40] Ivanov V K, Chaikovskaia A D, Karlovets D V 2023 Phys. Rev. A 108 062803
[41] Duan J, Gong M, Cheng Y, Zhang S B 2024 Phys. Rev. A 109 063114Google Scholar
[42] Becke A D 1993 J. Chem. Phys. 98 5648Google Scholar
[43] Lee C, Yang W, Parr R G 1988 Phys. Rev. B 37 785Google Scholar
[44] Jr T H D 1989 J. Chem. Phys. 90 1007
[45] Sanna N, Baccarelli I, Morelli G 2009 Comput. Phys. Commun. 180 2544Google Scholar
计量
- 文章访问数: 246
- PDF下载量: 22
- 被引次数: 0