搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于极紫外光的Ne, Xe原子电离

雷建廷 余璇 史国强 闫顺成 孙少华 王全军 丁宝卫 马新文 张少锋 丁晶洁

引用本文:
Citation:

基于极紫外光的Ne, Xe原子电离

雷建廷, 余璇, 史国强, 闫顺成, 孙少华, 王全军, 丁宝卫, 马新文, 张少锋, 丁晶洁

Photoionization of Ne and Xe atoms induced by extreme ultraviolet photons

Lei Jian-Ting, Yu Xuan, Shi Guo-Qiang, Yan Shun-Cheng, Sun Shao-Hua, Wang Quan-Jun, Ding Bao-Wei, Ma Xin-Wen, Zhang Shao-Feng, Ding Jing-Jie
PDF
HTML
导出引用
  • 极紫外(extreme ultraviolet, XUV)光与物质相互作用是探索微观粒子内部结构的重要方式. 本文利用反应显微成像谱仪测量了Ne, Xe原子在XUV光作用下单电离与双电离的电子角分布, 提取了Ne原子2p电子和Xe原子5p, 5s电子电离的β不对称参数, 并结合前人已发表的实验数据与不同的理论模型进行对比. 结果表明Ne原子2p壳层电子电离受电子关联效应影响较弱; Xe原子5p电子电离受电子关联效应影响强, 且不受相对论效应的影响, 但这两种效应在Xe原子5s电子电离过程中都发挥了重要作用. 此外, 研究还发现Xe原子双电离存在直接双电离和间接双电离两种机制, 并给出了间接双电离第一步与第二步光电子角分布与β不对称参数信息.
    The interaction of extreme ultraviolet (XUV) photon with matter is a meaningful way to understand the electronic structure of microscopic particles. In this paper, the electron angular distributions of single ionization and double ionization of Ne and Xe atoms interacting with XUV photons are investigated by utilizing a reaction microscope. The β-asymmetric parameters of 2p electrons of Ne atom, and 5p, 5s electrons of Xe atom combined with the reported experimental data are compared with those from different theoretical models. The result shows that the electron correlation effect can be ignored in the ionization of 2p electron of Ne atom. While the ionization of 5p electron of Xe atom is strongly influenced by the electron correlation effect, but not by the relativistic effect. These two effects play an important role in ionizing the 5s shell of Xe atom. In addition, this study finds that both direct double ionization and indirect double ionization exist simultaneously during the ionization of Xe atom, and gives the photoelectron angular distributions and the β-asymmetric parameters of the first step and the second step of indirect double ionization.
      通信作者: 丁晶洁, dingjj@lzu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11905083, U1932133)资助的课题.
      Corresponding author: Ding Jing-Jie, dingjj@lzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11905083, U1932133).
    [1]

    Leuchs G 1984 Multiphoton Processes Berlin, Heidelberg, September 5−12, 1984 pp48−57

    [2]

    L'Huillier A, Lompre L A, Mainfray G, Manus C 1983 Phys. Rev. A 27 2503Google Scholar

    [3]

    Weber T, Giessen H, Weckenbrock M, Urbasch G, Staudte A 2000 Nature 405 658Google Scholar

    [4]

    Imanaka H, Smith M A 2007 Geophys. Res. Lett. 34 L02204Google Scholar

    [5]

    Hell N, Brown G V, Wilms J, Grinberg V, Clementson J, Liedahl D, Porter F S, Kelley R L, Kilbourne C A, Beiersdorfer P 2016 Astrophys. J. 830 26Google Scholar

    [6]

    Cooper J W, Fano U, Prats F 1963 Phys. Rev. Lett. 10 518Google Scholar

    [7]

    Madden R P, Codling K 1963 Phys. Rev. Lett. 10 516Google Scholar

    [8]

    Wuilleumier F, Krause M O 1974 Phys. Rev. A 10 242Google Scholar

    [9]

    Becker U, Langer B, Kerkhoff H G, Kupsch M, Szostak D, Wehlitz R, Heimann P A, Liu S H, Lindle D W, Ferrett T A, Shirley D A 1988 Phys. Rev. Lett. 60 1490Google Scholar

    [10]

    Richter M, Bobashev S V, Sorokin A A, Tiedtke K 2010 J. Phys. B:At. Mol. Opt. Phys. 43 194005Google Scholar

    [11]

    Bolognesi P, Cavanagh S J, Avaldi L, Camilloni R, Zitnik M, Stuhec M, King G C 2000 J. Phys. B:At. Mol. Opt. Phys. 33 4723Google Scholar

    [12]

    Hall R I, Ellis K, Mcconkey A, Dawber G, Avaldi L, Macdonald M A, King G C 1992 J. Phys. B:At. Mol. Opt. Phys. 23 377Google Scholar

    [13]

    Fano U, Cooper J W 1968 Rev. Mod. Phys. 40 441Google Scholar

    [14]

    Wuilleumier F, Adam M Y, Dhez P, Sandner N, Schmidt V, Mehlhorn W 1977 Phys. Rev. A 16 646Google Scholar

    [15]

    Johnson W R, Cheng K T 1978 Phys. Rev. Lett. 40 1167Google Scholar

    [16]

    Hemmers O, Whitfield S B, Glans P, Wang H, Lindle D W, Wehlitz R, Sellin I A 1998 Rev. Sci. Instrum. 69 3809Google Scholar

    [17]

    Schwarzkopf O, Krässig B, Elmiger J, Schmidt V 1993 Phys. Rev. Lett. 70 3008Google Scholar

    [18]

    Ueda K, Shimizu Y, Chiba H, Kitajima M, Okamoto M, Hoshino M, Tanaka H, Hayaishi T, Fritzsche S, Sazhina I P, Kabachnik N M 2003 J. Phys. B: At. Mol. Opt. Phys. 36 319Google Scholar

    [19]

    Dörner R, Vogt T, Mergel V, et al. 1996 Phys. Rev. Lett. 76 2654Google Scholar

    [20]

    Czasch A, Schöffler M, Hattass M, et al. 2005 Phys. Rev. Lett. 95 243003Google Scholar

    [21]

    Weber T, Weckenbrock M, Staudte A, Hattass M, Spielberger L, Jagutzki O, Mergel V, Böcking H S, Urbasch G, Giessen H, Bräuning H, Cocke C L, Prior M H, Dörner R 2001 Opt. Express 8 368Google Scholar

    [22]

    Dörner R, Mergel V, Jagutzki O, Spielberger L, Ullrich J, Moshammer R, Schmidtböcking H 2000 Phys. Rep. 330 95Google Scholar

    [23]

    Hai B, Zhang S F, Zhang M, Najjari B, Dong D P, Lei J T, Zhao D M, Ma X 2020 Phys. Rev. A 101 052706Google Scholar

    [24]

    Gagnon E, Sandhu A S, Paul A, Hagen K, Czasch A, Jahnke T, Ranitovic P, Lewis Cocke C, Walker B, Murnane M M, Kapteyn H C 2008 Rev. Sci. Instrum. 79 063102Google Scholar

    [25]

    Wiley W C, Mclaren I H 1955 Rev. Sci. Instrum. 26 1150Google Scholar

    [26]

    Codling K, Houlgate R G, West J B, Woodruff P R 1976 J. Phys. B:At. Mol. Phys. 9 L83Google Scholar

    [27]

    Dehmer J L, Chupka W A, Berkowitz J, Jivery W T 1975 Phys. Rev. A 12 1966Google Scholar

    [28]

    Schmidt V 1986 Photoionization in Rare Gases with Synchrotron Radiation: Some Basic Aspects for Critical Tests with Theory (Vol. 2) pp275−283

    [29]

    Amusia M Y, Cherepkov N A, Chernysheva L V 1972 Phys. Rev. A 40 15Google Scholar

    [30]

    Lagutin B M, Petrov I D, Sukhorukov V L, Whitfield S B, Langer B, Viefhaus J, Wehlitz R, Berrah N, Mahler W, Becker U 1996 J. Phys. B:At. Mol. Opt. Phys. 29 937Google Scholar

    [31]

    Samson J, Stolte W C 2002 J. Electron Spectrosc. Relat. Phenom. 123 265Google Scholar

    [32]

    Qiao C K, Chi H C, Hsu M C, Zheng X G, Jiang G, Lin S T, Tang C J, Huang K N 2019 J. Phys. B: At. Mol. Opt. Phys. 52 075001Google Scholar

    [33]

    Fahlman A, Carlson T A, Krause M O 1983 Phys. Rev. Lett. 50 1114Google Scholar

    [34]

    Samson J A R, Gardner J L 1974 Phys. Rev. Lett. 33 671Google Scholar

    [35]

    Krause M O, Carlson T A, Woodruff P R 1981 Phys. Rev. A 24 1374Google Scholar

    [36]

    Johnson W R, Cheng K T 1979 Phys. Rev. A 20 978Google Scholar

    [37]

    Johnson W R, Cheng K T 2001 Phys. Rev. A 63 022504Google Scholar

    [38]

    White M G, Southworth S H, Kobrin P, Poliakoff E D, Rosenberg R A, Shirley D A 1979 Phys. Rev. Lett. 43 1661Google Scholar

    [39]

    Dehmer J L, Dill D 1976 Phys. Rev. Lett. 37 1049Google Scholar

    [40]

    Eland J H D, Vieuxmaire O, Kinugawa T, Lablanquie P, Hall R I, Penent F 2003 Phys. Rev. Lett. 90 053003Google Scholar

  • 图 1  实验装置示意图

    Fig. 1.  Schematic diagram of the experimental setup.

    图 2  (a) Ne原子光电子的能谱; (b) 光电子动量在y-z平面内的二维动量分布图, 统计动量$ \left|{P}_{x}\right| < 0.1 $的事件; (c) 2p电子的角分布; (d) 2p电子的β不对称参数随光子能量的变化关系

    Fig. 2.  (a) Energy spectrum of the photoelectron from Ne; (b) density plots of the momentum distribution of the photoelectron on the y-z plane for events with transverse momentum $ \left|{P}_{x}\right| < 0.1 $; (c) angular distribution of 2p electrons; (d) the β-asymmetric parameter for 2p photoionization as a function of the photon energy.

    图 3  (a) 入射光子能量为38.8 eV时, Xe原子单电离的出射光电子能谱; (b) Xe原子单电离出射光电子在y-z平面内的二维动量分布

    Fig. 3.  (a) Photoelectron energy spectrum for Xe with 38.8 eV XUV photon; (b) photoelectron momentum distribution of Xe on the y-z plane defined by the XUV polarization.

    图 4  (a), (c) 分别为Xe原子5p电子与5s电子电离的角分布图; (b), (d) 分别为5p电子与5s电子对应的β不对称参数随入射光子能量的变化

    Fig. 4.  (a), (c) Angular distribution of the 5p and 5s photoelectrons of Xe, respectively; (b), (d) β-asymmetric parameter of 5p and 5s electron varies with the photon energy, respectively.

    图 5  (a) 在38.8 eV XUV光的作用下, Xe原子双电离对应的反应路径; (b) Xe原子单光子双电离的电子能谱; (c) 光电子能量在0−1.5 eV 内的电子角分布; (d) 5.5−7.0 eV 能量的光电子角分布

    Fig. 5.  (a) Typical routes to double ionization of Xe interacting with 38.8 eV XUV photon; (b) kinetic energy distribution of photoelectrons from double ionization of Xe; (c) angular distributions of the photoelectrons energy in the range of 0–1.5 eV; (d) angular distributions of the photoelectrons energy in the range of 5.5–7.0 eV.

    表 1  Xe原子不同电子组态及结合能

    Table 1.  Different electronic configurations and binding energies of Xe atoms.

    Xe+电子组态总角动量J能量/eV能峰序号
    5p5P3/212.10(1)
    P1/213.40(2)
    5s5p6S1/223.30(3)
    5s25p4 (3P)6p2D3/227.54(4)
    5s25p4 (3P)5d2D5/2
    5s25p4 (1D)5d2P1/227.88
    5s25p4 (1D)5d2D3/227.97
    5s25p4 (1S)6s2S1/228.16
    下载: 导出CSV
  • [1]

    Leuchs G 1984 Multiphoton Processes Berlin, Heidelberg, September 5−12, 1984 pp48−57

    [2]

    L'Huillier A, Lompre L A, Mainfray G, Manus C 1983 Phys. Rev. A 27 2503Google Scholar

    [3]

    Weber T, Giessen H, Weckenbrock M, Urbasch G, Staudte A 2000 Nature 405 658Google Scholar

    [4]

    Imanaka H, Smith M A 2007 Geophys. Res. Lett. 34 L02204Google Scholar

    [5]

    Hell N, Brown G V, Wilms J, Grinberg V, Clementson J, Liedahl D, Porter F S, Kelley R L, Kilbourne C A, Beiersdorfer P 2016 Astrophys. J. 830 26Google Scholar

    [6]

    Cooper J W, Fano U, Prats F 1963 Phys. Rev. Lett. 10 518Google Scholar

    [7]

    Madden R P, Codling K 1963 Phys. Rev. Lett. 10 516Google Scholar

    [8]

    Wuilleumier F, Krause M O 1974 Phys. Rev. A 10 242Google Scholar

    [9]

    Becker U, Langer B, Kerkhoff H G, Kupsch M, Szostak D, Wehlitz R, Heimann P A, Liu S H, Lindle D W, Ferrett T A, Shirley D A 1988 Phys. Rev. Lett. 60 1490Google Scholar

    [10]

    Richter M, Bobashev S V, Sorokin A A, Tiedtke K 2010 J. Phys. B:At. Mol. Opt. Phys. 43 194005Google Scholar

    [11]

    Bolognesi P, Cavanagh S J, Avaldi L, Camilloni R, Zitnik M, Stuhec M, King G C 2000 J. Phys. B:At. Mol. Opt. Phys. 33 4723Google Scholar

    [12]

    Hall R I, Ellis K, Mcconkey A, Dawber G, Avaldi L, Macdonald M A, King G C 1992 J. Phys. B:At. Mol. Opt. Phys. 23 377Google Scholar

    [13]

    Fano U, Cooper J W 1968 Rev. Mod. Phys. 40 441Google Scholar

    [14]

    Wuilleumier F, Adam M Y, Dhez P, Sandner N, Schmidt V, Mehlhorn W 1977 Phys. Rev. A 16 646Google Scholar

    [15]

    Johnson W R, Cheng K T 1978 Phys. Rev. Lett. 40 1167Google Scholar

    [16]

    Hemmers O, Whitfield S B, Glans P, Wang H, Lindle D W, Wehlitz R, Sellin I A 1998 Rev. Sci. Instrum. 69 3809Google Scholar

    [17]

    Schwarzkopf O, Krässig B, Elmiger J, Schmidt V 1993 Phys. Rev. Lett. 70 3008Google Scholar

    [18]

    Ueda K, Shimizu Y, Chiba H, Kitajima M, Okamoto M, Hoshino M, Tanaka H, Hayaishi T, Fritzsche S, Sazhina I P, Kabachnik N M 2003 J. Phys. B: At. Mol. Opt. Phys. 36 319Google Scholar

    [19]

    Dörner R, Vogt T, Mergel V, et al. 1996 Phys. Rev. Lett. 76 2654Google Scholar

    [20]

    Czasch A, Schöffler M, Hattass M, et al. 2005 Phys. Rev. Lett. 95 243003Google Scholar

    [21]

    Weber T, Weckenbrock M, Staudte A, Hattass M, Spielberger L, Jagutzki O, Mergel V, Böcking H S, Urbasch G, Giessen H, Bräuning H, Cocke C L, Prior M H, Dörner R 2001 Opt. Express 8 368Google Scholar

    [22]

    Dörner R, Mergel V, Jagutzki O, Spielberger L, Ullrich J, Moshammer R, Schmidtböcking H 2000 Phys. Rep. 330 95Google Scholar

    [23]

    Hai B, Zhang S F, Zhang M, Najjari B, Dong D P, Lei J T, Zhao D M, Ma X 2020 Phys. Rev. A 101 052706Google Scholar

    [24]

    Gagnon E, Sandhu A S, Paul A, Hagen K, Czasch A, Jahnke T, Ranitovic P, Lewis Cocke C, Walker B, Murnane M M, Kapteyn H C 2008 Rev. Sci. Instrum. 79 063102Google Scholar

    [25]

    Wiley W C, Mclaren I H 1955 Rev. Sci. Instrum. 26 1150Google Scholar

    [26]

    Codling K, Houlgate R G, West J B, Woodruff P R 1976 J. Phys. B:At. Mol. Phys. 9 L83Google Scholar

    [27]

    Dehmer J L, Chupka W A, Berkowitz J, Jivery W T 1975 Phys. Rev. A 12 1966Google Scholar

    [28]

    Schmidt V 1986 Photoionization in Rare Gases with Synchrotron Radiation: Some Basic Aspects for Critical Tests with Theory (Vol. 2) pp275−283

    [29]

    Amusia M Y, Cherepkov N A, Chernysheva L V 1972 Phys. Rev. A 40 15Google Scholar

    [30]

    Lagutin B M, Petrov I D, Sukhorukov V L, Whitfield S B, Langer B, Viefhaus J, Wehlitz R, Berrah N, Mahler W, Becker U 1996 J. Phys. B:At. Mol. Opt. Phys. 29 937Google Scholar

    [31]

    Samson J, Stolte W C 2002 J. Electron Spectrosc. Relat. Phenom. 123 265Google Scholar

    [32]

    Qiao C K, Chi H C, Hsu M C, Zheng X G, Jiang G, Lin S T, Tang C J, Huang K N 2019 J. Phys. B: At. Mol. Opt. Phys. 52 075001Google Scholar

    [33]

    Fahlman A, Carlson T A, Krause M O 1983 Phys. Rev. Lett. 50 1114Google Scholar

    [34]

    Samson J A R, Gardner J L 1974 Phys. Rev. Lett. 33 671Google Scholar

    [35]

    Krause M O, Carlson T A, Woodruff P R 1981 Phys. Rev. A 24 1374Google Scholar

    [36]

    Johnson W R, Cheng K T 1979 Phys. Rev. A 20 978Google Scholar

    [37]

    Johnson W R, Cheng K T 2001 Phys. Rev. A 63 022504Google Scholar

    [38]

    White M G, Southworth S H, Kobrin P, Poliakoff E D, Rosenberg R A, Shirley D A 1979 Phys. Rev. Lett. 43 1661Google Scholar

    [39]

    Dehmer J L, Dill D 1976 Phys. Rev. Lett. 37 1049Google Scholar

    [40]

    Eland J H D, Vieuxmaire O, Kinugawa T, Lablanquie P, Hall R I, Penent F 2003 Phys. Rev. Lett. 90 053003Google Scholar

  • [1] 赵伟宽, 张凌, 程云鑫, 周呈熙, 张文敏, 段艳敏, 胡爱兰, 王守信, 张丰玲, 李政伟, 曹一鸣, 刘海庆. EAST托卡马克钨杂质上下不对称性分布的实验研究. 物理学报, 2024, 73(3): 035201. doi: 10.7498/aps.73.20231448
    [2] 赵婷, 宫毛毛, 张松斌. 氦原子贝塞尔涡旋光电离的理论研究. 物理学报, 2024, 73(24): 244201. doi: 10.7498/aps.73.20241378
    [3] 王均武, 玄洪文, 俞航航, 王新兵, Vassily S. Zakharov. 激光诱导放电等离子体极紫外辐射的模拟. 物理学报, 2024, 73(1): 015203. doi: 10.7498/aps.73.20231158
    [4] 骆炎, 余璇, 雷建廷, 陶琛玉, 张少锋, 朱小龙, 马新文, 闫顺成, 赵晓辉. 极紫外光源及高荷态离子诱导下甲烷的脱氢通道碎裂机制. 物理学报, 2024, 73(4): 044101. doi: 10.7498/aps.73.20231377
    [5] 马堃, 朱林繁, 颉录有. Ar原子和K+离子序列双光双电离光电子角分布的非偶极效应. 物理学报, 2022, 71(6): 063201. doi: 10.7498/aps.71.20211905
    [6] 马堃, 颉录有, 董晨钟. Ar原子序列双光双电离产生光电子角分布的理论计算. 物理学报, 2020, 69(5): 053201. doi: 10.7498/aps.69.20191814
    [7] 马堃, 颉录有, 张登红, 蒋军, 董晨钟. 类钠离子光电子角分布的非偶极效应. 物理学报, 2017, 66(4): 043201. doi: 10.7498/aps.66.043201
    [8] 马堃, 颉录有, 张登红, 董晨钟, 屈一至. 氖原子光电子角分布的理论计算. 物理学报, 2016, 65(8): 083201. doi: 10.7498/aps.65.083201
    [9] 张汉君, 单旭, 徐春凯, 陈向军. 共面不对称条件下低能电子碰撞电离Ar(3p)的三重微分截面. 物理学报, 2013, 62(18): 183401. doi: 10.7498/aps.62.183401
    [10] 窦卫东, 宋 飞, 黄 寒, 鲍世宁, 陈 桥. Ag(110)表面吸附酞菁铜分子的紫外光电子谱研究. 物理学报, 2008, 57(1): 628-633. doi: 10.7498/aps.57.628
    [11] 蔡 懿, 王文涛, 杨 明, 刘建胜, 陆培祥, 李儒新, 徐至展. 基于强激光辐照固体锡靶产生极紫外光源的实验研究. 物理学报, 2008, 57(8): 5100-5104. doi: 10.7498/aps.57.5100
    [12] 陆赟豪, 段效邦, 吕 萍, 张寒洁, 李海洋, 鲍世宁, 何丕模. 三萘基膦在Ag(110)面上沉积的紫外光电子能谱研究. 物理学报, 2005, 54(9): 4319-4323. doi: 10.7498/aps.54.4319
    [13] 吕斌, 吕萍, 施申蕾, 张建华, 唐建新, 楼辉, 何丕模, 鲍世宁. OPCOT在Ru(0001)表面上的紫外光电子能谱研究. 物理学报, 2002, 51(11): 2644-2648. doi: 10.7498/aps.51.2644
    [14] 金奎娟, 潘少华, 杨国桢. 量子阱中电子-LO声子相互作用引起共振喇曼散射的不对称线形. 物理学报, 1995, 44(2): 299-304. doi: 10.7498/aps.44.299
    [15] 鲍世宁, 朱立, 徐亚伯. CO在有K沉积的W(100)面上吸附的角分辨紫外光电子能谱. 物理学报, 1991, 40(11): 1888-1892. doi: 10.7498/aps.40.1888
    [16] 鲍世宁, 朱立, 徐亚伯, 李佐志. CO与K在Fe(110)面上共吸附的角分辨紫外光电子谱. 物理学报, 1990, 39(8): 169-174. doi: 10.7498/aps.39.169-3
    [17] 卢学坤, 侯晓远, 丁训民, 陈平. 用角分辨紫外光电子能谱研究GaP的能带结构. 物理学报, 1990, 39(8): 108-114. doi: 10.7498/aps.39.108
    [18] 吴柏枚, 陈兆甲, 鲍世宁, 鲍德松, 季振国, 刘古. 非晶Nb-Ni合金晶化过程中紫外光电子能谱研究. 物理学报, 1989, 38(4): 675-678. doi: 10.7498/aps.38.675
    [19] 潘士宏, 莫党, 秦关根, W. E. SPICER. 贵金属—GaAs(110)界面价带紫外光电子谱. 物理学报, 1987, 36(10): 1255-1263. doi: 10.7498/aps.36.1255
    [20] 张仿清, 徐希翔, 陈光华, 蒋致诚, 陈正石, 齐尚奎. 用紫外光电子能谱研究a-Si1-xCx:H的价带特性. 物理学报, 1986, 35(9): 1253-1258. doi: 10.7498/aps.35.1253
计量
  • 文章访问数:  5734
  • PDF下载量:  173
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-25
  • 修回日期:  2022-03-23
  • 上网日期:  2022-06-15
  • 刊出日期:  2022-07-20

/

返回文章
返回