搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不对称光热与光力协同作用实现等离激元圆二色光谱的选择性调控

魏思雨 黄浩 马小云 黄海文 徐欣 王荣瑶

引用本文:
Citation:

不对称光热与光力协同作用实现等离激元圆二色光谱的选择性调控

魏思雨, 黄浩, 马小云, 黄海文, 徐欣, 王荣瑶

Selective modulation of plasmonic circular dichroism spectra achieved by synergy of asymmetric optomechanical and photothermal effects in nano-plasmonic chiral structures

WEI Siyu, HUANG Hao, MA Xiaoyun, HUANG Haiwen, XU Xin, WANG Rongyao
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 光与金属纳米手性结构作用可展现超强的等离激元圆二色性. 然而, 光激发下金属纳米手性结构的光力与光热的协同作用效应如何影响其圆二色性, 仍缺乏深入的理解. 本研究针对具有相邻同手性中心的金纳米棒三聚体, 探讨了圆偏振光激发下的不对称光力与光热的协同作用效应对其手性结构及相应等离激元圆二色性质的影响. 基于有限元法的模拟计算表明: 在光热温度梯度场激活金纳米棒手性三聚体的结构动态变化的同时, 左旋/右旋圆偏振光产生的不对称光扭矩将导致金纳米棒三聚体几何结构(特别是手性中心的扭转角)出现不对称变化, 从而使金纳米棒三聚体的等离激元圆二色光谱响应呈现明显的偏振依赖性. 进一步的实验研究表明: 基于这种不对称光力与光热的协同作用效应, 左旋和右旋圆偏振光能够用于调控等离激元圆二色光谱响应的不对称增强和抑制. 本研究不仅为研究光学调控纳米等离激元手性组装结构奠定了理论基础, 也为实验设计和制备物理方法调控的先进纳米光子学器件提供了重要参考.
    Nano-plasmonic chiral structures exhibit stronger plasmonic circular dichroism than most organic materials. In addition to the circular dichroism response, the interaction between light and nano-plasmonic chiral structure also involves the photothermal and optomechanical effects. However, the synergy between the photothermal and optomechanical effects under circularly polarized light excitation remains poorly understood. This work investigates the synergy of the photothermal and optomechanical effects in chiral gold nanorod trimers. The asymmetric photothermal and optomechanical effects in gold nanorod trimers with adjacent homochiral centers are analyzed by finite element simulation. The simulation results show that the dynamic structure of the chiral gold nanorod trimer is activated when the photothermal temperature reaches the threshold value. At the same time, the asymmetric optical torque generated by left- and right-handed circularly polarized light will lead to asymmetric changes in the geometry of the gold nanorod trimer, especially in the twist angle of the chiral center, so that the spectral response of the gold nanorod trimer is polarization-dependent. More significantly, based on the synergy of the photothermal and optomechanical effects, experimental results show that the chiral gold nanorod oligomers can be used to control the asymmetric enhancement and suppression of the plasmonic circular dichroic spectral response through the enantioselective interaction of left- and right-handed circularly polarized light. This study provides an important reference for designing advanced nano-photonics devices.
  • 图 1  GNR手性三聚体的物理模型及其光学性质 (a) 圆偏振光与GNR手性三聚体相互作用的物理模型, 展示了在六个方向平均的圆偏振光激发下的三聚体结构, 其中链接分子位于GNR之间的间隙区域; (b) PP型和MM型GNR手性三聚体的结构示意图; (c) PP型GNR三聚体的消光光谱; (d) 具有相反手性的GNR三聚体的等离激元CD光谱. 其中PP型GNR三聚体中GNR1-2和GNR2-3的扭转角$\theta = - 1.5^\circ $, MM型GNR三聚体中GNR1-2和GNR2-3的扭转角$\theta = 1.5^\circ $. 入射光功率密度为$ I = 1.4 \times {10^8}\;{\mathrm{mW}}{ \cdot}{\mathrm{ c{m}}^{ - 2}} $

    Fig. 1.  Physical models and optical properties of GNR chiral trimer: (a) The physical model of the interaction between circularly polarized light and GNR chiral trimer shows the trimer structure under six directions of average circularly polarized light excitation, with linking molecules located in the gap region between GNR; (b) the schematic diagram of the structure of PP-state and MM-state GNR chiral trimers; (c) the extinction spectra of PP-state GNR trimer; (d) the plasmonic CD spectra of GNR trimer with opposite chirality. The twist angle θ of GNR1-2 and GNR2-3 in PP-state GNR trimer is –1.5°, and the twist angle θ of GNR1-2 and GNR2-3 in MM-state GNR trimer is 1.5°. The incident light power density is $ I = 1.4 \times {10^8}\;{\mathrm{mW}}{ \cdot }{\mathrm{c{m}}^{ - 2}} $.

    图 2  GNR1-2的光热CD(${\text{C}}{{\text{D}}_{\Delta {T_{{\text{{{rise}}}}}}}}$)、光热温度(${T_{{\text{{{rise}}}}}}$)和光扭矩($\Delta {{\boldsymbol{M}}_{Z21}}$) (a) GNR1-2间隙中心位置处的光热CD光谱. 插图为PP型GNR三聚体, 圆点标注了链接分子与GNR间隙区域的中心位置. 激光功率密度为$ I = 1.4 \times {10^8}{\mathrm{mW}}{ \cdot }{\mathrm{c{m}}^{ - 2}} $; (b)不同激光功率密度下PP型GNR三聚体中GNR1-2在间隙中心位置的光热温度; (c)不同偏振态的激光激发下, 扭转角$ {\theta _0} $在$ 0^\circ < \left| {{\theta _0}} \right| < 5^\circ $范围内的GNR2相对于GNR1的光扭矩. 激光波长为721 nm, 功率密度$ I = 1.46 \times {10^8}\;{\mathrm{mW}}{ \cdot }{\mathrm{c{m}}^{ - 2}} $

    Fig. 2.  The photothermal CD (${\text{C}}{{\text{D}}_{\Delta {T_{{\text{rise}}}}}}$), photothermal temperature (${T_{{\text{rise}}}}$), and optical torque ($\Delta {{\boldsymbol{M}}_{Z21}}$) of GNR1-2: (a) The photothermal CD spectra at the center position of the GNR1-2 gap. The illustration shows a PP-state GNR trimer, with dots indicating the center position of the gap region between the linking molecule and GNR. The laser power density $ I = 1.4 \times $$ {10^8}\;{\mathrm{mW}}{ \cdot} {\mathrm{c{m}}^{ - 2}} $. (b) The photothermal temperature of GNR2-3 at the center of the gap in PP-state GNR trimer under different laser power densities. (c) Under laser excitation of different polarization states, the optical torque of GNR2 relative to GNR1 with a twist angle $ {\theta _0} $ in the range of $ 0^\circ < \left| {{\theta _0}} \right| < 5^\circ $. The laser wavelength is 721 nm, power density $ I = 1.46 \times {10^8}\;{\mathrm{mW}} {\cdot }{\mathrm{c{m}}^{ - 2}} $.

    图 3  不同偏振态的激光激发下, PP型GNR手性三聚体中初始扭转角为θ0的单一手性中心(GNR1-2)的结构变化模型, 其中激光波长为721 nm

    Fig. 3.  The structural change model of single chiral center (GNR1-2) with an initial twist angle of θ0 in PP-state GNR chiral trimer under laser excitation of different polarization states. The laser wavelength is 721 nm.

    图 4  不同偏振态的激光激发下的GNR手性三聚体的末态及其模拟CD光谱 (a) GNR手性三聚体的结构变化的末态; (b) PP型GNR三聚体的模拟CD光谱; (c) MM型GNR三聚体的模拟CD光谱. 其中激光波长为721 nm, 功率密度$ I = 1.4 \times {10^8}\;{\mathrm{mW}}{ \cdot} {\mathrm{c{m}}^{ - 2}} $. 对于PP型GNR三聚体, θ0θ1为–1.5°, θ2 = –2°, θ3 = –1°; 对于MM型GNR三聚体, θ0θ1为1.5°, θ2 = 1°, θ3 = 2°

    Fig. 4.  The final state and simulated CD spectra of GNR chiral trimer under laser excitation of different polarization states: (a) The final state of GNR chiral trimer after structural change; (b) simulated CD spectra of PP-state GNR trimers; (c) simulated CD spectra of MM-state GNR trimers. The laser wavelength is 721 nm, power density $ I = 1.4 \times {10^8}\;{\mathrm{mW}}{ \cdot} {\mathrm{c{m}}^{ - 2}} $. For PP-state GNR trimer, θ0 and θ1 are –1.5°, θ2 = –2°, and θ3 = –1°; for MM-state GNR trimer, θ0 and θ1 are 1.5°, θ2 = 1°, and θ3 = 2°.

    图 5  不同偏振态的激光激发下GNR手性寡聚体的吸收光谱与等离激元CD光谱 (a) L-GNR寡聚体的吸收光谱; (b) D-GNR寡聚体的吸收光谱; (c) L-GNR寡聚体的等离激元CD光谱; (d) D-GNR寡聚体的等离激元CD光谱. 其中激光波长为721 nm

    Fig. 5.  Absorption spectra and plasmonic CD spectra of GNR chiral oligomers under laser excitation of different polarization states: (a) The absorption spectra of L-GNR oligomers; (b) the absorption spectra of D-GNR oligomers; (c) the plasmonic CD spectra of L-GNR oligomers; (d) the plasmonic CD spectra of D-GNR oligomers. The laser wavelength is 721 nm.

  • [1]

    Gerlach H 2013 Chirality 25 684Google Scholar

    [2]

    Morrow S M, Bissette A J, Fletcher S P 2017 Nat. Nanotechnol. 12 410Google Scholar

    [3]

    Hentschel M, Schaferling M, Duan X, Giessen H, Liu N 2017 Sci. Adv. 3 e1602735Google Scholar

    [4]

    Ma W, Xu L, de Moura A F, Wu X, Kuang H, Xu C, Kotov N A 2017 Chem. Rev. 117 8041Google Scholar

    [5]

    Ben-Moshe A, Maoz B M, Govorov A O, Markovich G 2013 Chem. Soc. Rev. 42 7028Google Scholar

    [6]

    Valev V K, Baumberg J J, Sibilia C, Verbiest T 2013 Adv. Mater. 25 2517Google Scholar

    [7]

    Soukoulis C M, Wegener M 2011 Nat. Photonics 5 523Google Scholar

    [8]

    McPeak K M, van Engers C D, Bianchi S, Rossinelli A, Poulikakos L V, Bernard L, Herrmann S, Kim D K, Burger S, Blome M, Jayanti S V, Norris D J 2015 Adv. Mater. 27 6244Google Scholar

    [9]

    Gansel J K, Thiel M, Rill M S, Decker M, Bade K, Saile V, von Freymann G, Linden S, Wegener M 2009 Science 325 1513Google Scholar

    [10]

    Hendry E, Carpy T, Johnston J, Popland M, Mikhaylovskiy R V, Lapthorn A J, Kelly S M, Barron L D, Gadegaard N, Kadodwala M 2010 Nat. Nanotechnol. 5 783Google Scholar

    [11]

    Ma W, Xu L, Wang L, Xu C, Kuang H 2019 Adv. Funct. Mater. 29 1805512Google Scholar

    [12]

    Solomon M L, Saleh A, Poulikakos L V, Abendroth J M, Tadesse L F, Dionne J A 2020 Acc. Chem. Res. 53 588Google Scholar

    [13]

    Hao C, Xu L, Ma W, Wu X, Wang L, Kuang H, Xu C 2015 Adv. Funct. Mater. 25 5816Google Scholar

    [14]

    Zheng J, Cheng X, Zhang H, Bai X, Ai R, Shao L, Wang J 2021 Chem. Rev. 121 13342Google Scholar

    [15]

    Chen H, Shao L, Li Q, Wang J 2013 Chem. Soc. Rev. 42 2679Google Scholar

    [16]

    Hu Z, Meng D, Lin F, Zhu X, Fang Z, Wu X 2019 Adv. Opt. Mater. 7 1801590Google Scholar

    [17]

    Nguyen M K, Kuzyk A 2019 ACS Nano 13 13615Google Scholar

    [18]

    Wang M, Dong J, Zhou C, Xie H, Ni W, Wang S, Jin H, Wang Q 2019 ACS Nano 13 13702Google Scholar

    [19]

    D P, Shah R K, S K, Soni S 2022 Appl. Nanosci. 12 2045Google Scholar

    [20]

    Baffou G, Girard C, Quidant R 2010 Phys. Rev. Lett. 104 136805Google Scholar

    [21]

    Huang W H, Li S F, Xu H T, Xiang Z X, Long Y B, Deng H D 2018 Opt. Express 26 6202Google Scholar

    [22]

    Zhang Q, Xiao J J, Zhang X M, Yao Y 2013 Opt. Commun. 301 121

    [23]

    Avalos-Ovando O, Besteiro L V, Movsesyan A, Markovich G, Liedl T, Martens K, Wang Z, Correa-Duarte M A, Govorov A O 2021 Nano Lett. 21 7298Google Scholar

    [24]

    Zhao W, Zhang W, Wang R Y, Ji Y, Wu X, Zhang X 2019 Adv. Funct. Mater. 29 1900587Google Scholar

    [25]

    Song J, Ji C Y, Ma X, Li J, Zhao W, Wang R Y 2024 J. Phys. Chem. Lett. 15 975Google Scholar

    [26]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370Google Scholar

    [27]

    Song M, Tong L, Liu S, Zhang Y, Dong J, Ji Y, Guo Y, Wu X, Zhang X, Wang R Y 2021 ACS Nano 15 5715Google Scholar

    [28]

    Ma W, Kuang H, Xu L, Ding L, Xu C, Wang L, Kotov N A 2013 Nat. Commun. 4 2689Google Scholar

    [29]

    Wang S, Liu X, Mourdikoudis S, Chen J, Fu W, Sofer Z, Zhang Y, Zhang S, Zheng G 2022 ACS Nano 16 19789Google Scholar

    [30]

    Tan L, Fu W, Gao Q, Wang P P 2024 Adv. Mater. 36 2309033Google Scholar

    [31]

    Kim R M, Huh J H, Yoo S, Kim T G, Kim C, Kim H, Han J H, Cho N H, Lim Y C, Im S W, Im E, Jeong J R, Lee M H, Yoon T Y, Lee H Y, Park Q H, Lee S, Nam K T 2022 Nature 612 470Google Scholar

  • [1] 夏兆生, 刘宇行, 包正, 王丽华, 吴博, 王刚, 王辉, 任信钢, 黄志祥. 基于准连续域束缚态的强圆二色性超表面. 物理学报, doi: 10.7498/aps.73.20240834
    [2] 赵伟宽, 张凌, 程云鑫, 周呈熙, 张文敏, 段艳敏, 胡爱兰, 王守信, 张丰玲, 李政伟, 曹一鸣, 刘海庆. EAST托卡马克钨杂质上下不对称性分布的实验研究. 物理学报, doi: 10.7498/aps.73.20231448
    [3] 应耀俊, 李海彬. 不对称双势阱中玻色-爱因斯坦凝聚体的动力学. 物理学报, doi: 10.7498/aps.72.20230419
    [4] 吴柔兰, 李九生. 线极化与圆极化波均可吸收的太赫兹超表面. 物理学报, doi: 10.7498/aps.72.20221832
    [5] 杨艳, 张斌, 任仲雪, 白光如, 刘璐, 赵增秀. 极性分子CO高次谐波产生过程中的不对称性. 物理学报, doi: 10.7498/aps.71.20221714
    [6] 鱼在洋, 郑锦韬, 张洋, 汪之国, 孙辉, 熊志强, 罗晖. 核磁共振陀螺中EPR信号响应不对称性研究. 物理学报, doi: 10.7498/aps.71.20220775
    [7] 余鹏, 王保清, 吴小虎, 王文昊, 徐红星, 王志明. 蜂窝状椭圆孔洞吸收器圆二色性研究. 物理学报, doi: 10.7498/aps.69.20200843
    [8] 吐达洪·阿巴, 屈瑜, 白俊冉, 张中月. 平面复合金属微纳结构的圆二色性研究. 物理学报, doi: 10.7498/aps.69.20200130
    [9] 王善江, 苏丹, 张彤. 表面等离激元光热效应研究进展. 物理学报, doi: 10.7498/aps.68.20190476
    [10] 苟学强, 张义军, 李亚珺, 陈明理. 闪电双向先导理论及观测:极性不对称、不稳定及间歇性. 物理学报, doi: 10.7498/aps.67.20181079
    [11] 邓红梅, 黄磊, 李静, 陆叶, 李传起. 基于石墨烯加载的不对称纳米天线对的表面等离激元单向耦合器. 物理学报, doi: 10.7498/aps.66.145201
    [12] 林康, 宫晓春, 宋其迎, 季琴颖, 马俊杨, 张文斌, 陆培芬, 曾和平, 吴健. 双色圆偏振飞秒脉冲驱动CO分子不对称解离. 物理学报, doi: 10.7498/aps.65.224209
    [13] 张树玲, 陈炜晔, 张勇. Co基金属纤维不对称巨磁阻抗效应. 物理学报, doi: 10.7498/aps.64.167501
    [14] 白金海, 芦小刚, 缪兴绪, 裴丽娅, 王梦, 高艳磊, 王如泉, 吴令安, 傅盘铭, 左战春. Rb87冷原子电磁感应透明吸收曲线不对称性的分析. 物理学报, doi: 10.7498/aps.64.034206
    [15] 黎航, 蒲昱东, 景龙飞, 林雉伟, 陈伯伦, 蒋炜, 周近宇, 黄天晅, 张海鹰, 于瑞珍, 张继彦, 缪文勇, 郑志坚, 曹柱荣, 杨家敏, 刘慎业, 江少恩, 丁永坤, 况龙钰, 胡广月, 郑坚. 间接驱动的内爆不对称性随腔长和时间变化的研究. 物理学报, doi: 10.7498/aps.62.225204
    [16] 沈红霞, 吴国祯, 王培杰. (R)-1,3丁二醇的手性不对称性:微分键极化率的研究. 物理学报, doi: 10.7498/aps.62.153301
    [17] 李钱光, 易煦农, 张秀, 吕昊, 丁么明. 双色场驱动不对称分子气体产生平台区超连续光谱. 物理学报, doi: 10.7498/aps.60.017203
    [18] 甘琛利, 张彦鹏, 余孝军, 聂志强, 李 岭, 宋建平, 葛 浩, 姜 彤, 张相臣, 卢克清. 基于双光子不对称色锁二阶随机关联的阿秒极化拍研究. 物理学报, doi: 10.7498/aps.56.2670
    [19] 缪中林, 陈平平, 蔡玮颖, 李志锋, 徐文兰, 袁先漳, 刘平, 史国良, 陈昌明, 朱德彰, 潘浩昌, 胡军, 李明乾, 陆卫. 组合注入质子导致不对称耦合双量子阱截面混合效应研究. 物理学报, doi: 10.7498/aps.50.116
    [20] 胡宁. Λ和∑粒子衰变的上下不对称性. 物理学报, doi: 10.7498/aps.17.315
计量
  • 文章访问数:  335
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-01
  • 修回日期:  2025-05-07
  • 上网日期:  2025-05-16

/

返回文章
返回