搜索

x
中国物理学会期刊

Co基金属纤维不对称巨磁阻抗效应

CSTR: 32037.14.aps.64.167501

Asymmetric giant magnetoimpedance of Co-rich melt-extraction microwires

CSTR: 32037.14.aps.64.167501
PDF
导出引用
  • 以直径32 μm的熔体抽拉Co基非晶金属纤维为研究对象, 分析了该纤维不同激励条件下的巨磁阻抗(giant magneto impedance, GMI)效应. 实验结果表明: 这类纤维的GMI效应具有不对称性特点, 即 AGMI (asymmetric GMI)效应. 同时, 发现AGMI效应随激励条件不同而变化, 随交流频率或者激励幅值升高而逐渐增强; 当存在一定偏置电压时, AGMI效应大幅增强. 通过研究纤维的磁化过程, 分析了Co基金属纤维的AGMI效应. 由于Co基熔体抽拉纤维具有螺旋各向异性以及磁滞的存在使得GMI效应具有不对称性, 频率升高或者激励电流幅值增加有利于壳层畴环向磁化, AGMI增强. 当在纤维两端施加偏置电压时, 偏置电流诱发环向磁场增强了环向磁化, AGMI效应提高; 偏置电压较低时磁场响应灵敏度提高, 同时磁化翻转向高场移动, 阻抗线性变化对应的直流磁场区间增大. 这一方面拓宽了GMI传感器工作区间及灵敏度, 另一方面不利于获得更大的磁场响应灵敏度. 10 MHz (5 mA)激励时, 施加1 V强度的偏置电压后, 对应的磁场灵敏度从616 V/T 提高至5687 V/T; 偏置电压为2 V时, 灵敏度降低到4525 V/T. 因此, 可以通过适当提高环向磁场的方法获得大的磁场响应灵敏度及阻抗变化线性区域.

     

    The giant magnetoimpedance(GMI) effect of Co-rich microwires makes an opportunity to design sensitive GMI weak magnetic meter sensor. Optimization of magnetic meters needs to improve the GMI response, especially the field sensitivity of microwires. In this study, Co-rich amorphous microwires each with an average diameter of 32 μm are prepared by melt-extracted technique and their GMI characteristics are investigated at frequencies ranging from 0.1 to 10 MHz with and without bias direct voltage applied. Experimental results indicate that the GMI effect of these wires has asymmetric features with the increases of frequency and driving current. It is found that the intrinsic asymmetric GMI (AGMI) response results from the helical anisotropy and magnetization hysteresis of the Co-rich microwires. Furthermore, it is found that there is a pronounced improvement in AGMI response when a bias voltage is applied. In theory, the factor which induces an increase in circular magnetic field causes successive changes in magnetization reversal of the quickly quenched Co-rich microwires with multiple domains and helical anisotropy. As a consequence, the circular magnetization process is enhanced, leading to higher circular permeability and stronger GMI response. Meanwhile, a bias voltage inducing the given circular magnetic field reinforces the magnetization process in a certain direction, which intensifies the asymmetric characteristic of GMI response. For example, the asymmetric ratio between two impedance peaks rises from 1.46% to 12.06% at 1MHz and 3 mA after applying a 1 V bias voltage. Simultaneously, the circular field inclines the magnetization off the axial direction which makes the axially induced magnetization reversal more difficult and occur at a higher switching field. This effect broadens the linear impedance zone; however, it reduces the slope of the impedance with the external field and the field sensitivity increasing to some extent. The balance between these two sides proves that AGMI response is related to the magnetization reversal process which is sensitive to the circular magnetic field. Experimental results indicate that the field sensitivity rises from 616 to 5687 V/T with the impedance linear zone broadening from 0.65 to 1.16 when a 1 V bias voltage is applied, while it decreases to 4525 V/T when the bias voltage futher increases to 2 V at 10 MHz and 5 mA. This reveals that the GMI effect of these amorphous Co-rich microwires with high field sensitivity can be optimized by applying proper bias voltage.

     

    目录

    /

    返回文章
    返回