搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚(偏氟乙烯-三氟乙烯)纳米薄膜极化反转与疲劳特性

杜晓莉 张修丽 刘宏波 季鑫

引用本文:
Citation:

聚(偏氟乙烯-三氟乙烯)纳米薄膜极化反转与疲劳特性

杜晓莉, 张修丽, 刘宏波, 季鑫

Study of ferroelectric switching and fatigue behaviors in poly(vinylidene fluoride-trifluoroethylene) copolymer nano-films

Du Xiao-Li, Zhang Xiu-Li, Liu Hong-Bo, Ji Xin
PDF
导出引用
  • 采用旋涂法制备了厚度为140 nm的聚(偏氟乙烯-三氟乙烯)[P(VDF-TrFE)]纳米薄膜, 研究了不同退火温度以及环境相对湿度对薄膜的极化反转和疲劳性能的影响. 运用X射线衍射仪、扫描电子显微镜和傅里叶变换红外光谱仪等测试技术对薄膜的微结构进行了表征. 实验结果表明, 通过不同温度的退火处理, P(VDF-TrFE)铁电薄膜的结晶度随着退火温度的升高而不断提高, 并且一定的温度范围内的退火处理可以提高薄膜的极化性能; 此外, P(VDF-TrFE) 铁电薄膜性能还表现出一定的环境湿度的敏感特性, 这与薄膜的物理性能和结构特点密切相关; P(VDF-TrFE)铁电薄膜在不同的环境湿度条件下 表现出较好的电学特性, 其漏电流均保持在10 -7A/cm2 的较低水平. 本工作揭示了再退火过程对薄膜的极化反转速度和疲劳恢复特性的影响, 并结合薄膜二次疲劳结果, 探讨了薄膜可逆的内部疲劳恢复特性机理.
    The nano-films of poly (vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) copolymer, with mole ratio of VDFTrFE 70/30, are deposited on titanium-metallized silicon wafer by spin coating technique. Annealing temperature and humidity dependence of polarization switching and fatigue babivors in ferroelectric P(VDF-TrFE) copolymer thin film capacitors have been investigated. Firstly, the effect of different annealing temperature on polarization behavior is revealed. It is found that the polarization of the film is improved by increasing annealing temperatures. When the annealing temperature is higher than 100℃, with increasing switching cycles, the ferroelectric polarization characteristics exhibit a trend of increasing firstly and then decreasing, a top value appears at the number of cycles near 104. A more appropriate heat treatment temperature is 130℃. Further analyses on the crystalline structures with X-ray diffraction show that the degree of crystallinity of the films is strongly dependent on the annealing temperature. It can be seen that the diffraction peak of the ferroelectric phase ( phase) becomes very strong and sharp with increasing annealing temperatre. It is demonstrated that the effect of annealing temperature on ferroelectric properties could be explained by the changes of the degree of crystallinity in these films from the results of X-ray and the polarization behaviors. Meanwhile, the microstructure of the 140 nm film annealed at 130℃ is obtained by using scanning electron microscope, which shows that the film exhibits a worm-like, dense, well-crystallized microstructure. Secondly, for the capacitor P(VDF-TrFE) films with a thickness of 140 nm, the ferroelectric polarization hysteresis loops as functions of electric field for the films at different relative humidities are achieved. It is obvious that the polarization properties depend on the relative humidity during the film preparation process, the polarizaiton fatigue can be further enhanced through a higher relative humidity during the sample preparation. In addition, one of the most important features for ferroelectric material to be used as an alternative FeRAM is the low leakage current density. Therefore, the descriptions of the leakage current density versus different relative humidities are given. It is observed that the voltage behavior of the leakage current has a minor dependence on relative humidity. In a word, these results illustrate that the polarization properties are strongly dependent not only on the annealing temperature, but also the relative humidity in a process for the preparation of the nano-films. Furthermore, according to a re-annealing treatment to improve the crystalline degree of the ferroelectric phase, the influence of the re-annealing process on the fatigue properties of the films is also studied. The polarization fatigue can be improved obviously by a re-annealing process, and the possible origins have been discussed. To further understand the variation of crystallization properties of the samples before and after re-annealing, the crystallinity of the film are studied by the technique of Fourier transform infrared spectroscopy. It is indicated that the crystallinity of the films can partly be recovered through re-annealing treatment. These results are very helpful and provide an available way to improve the ferroelectric polarization and fatigue properties of the ferroelectric nano-films.
    • 基金项目: 上海市自然科学基金(批准号:13ZR1418200)和上海市教育委员会科研创新项目(批准号:15ZZ093)资助的课题.
    • Funds: Project supported by Natural Science Foundation of Shanghai, China (Grant No. 13ZR1418200) and the Innovation Program of Shanghai Municipal Education Commission, China (Grant No. 15ZZ093).
    [1]

    Chen J Y, Yun Q, Gao W, Bai Y L, Nie C H, Zhao S F 2014 Mater. Lett. 136 11

    [2]

    Rodrigues S, Silva J, Khodorov A, Martín-Sánchez J, Pereira M, Gomes M 2013 Mater. Sci. Engineer. B 178 1224

    [3]

    Zhou Y C, Tang M H 2009 Mater. Rev. 23 1 (in Chinese) [周益春, 唐明华 2009 材料导报 23 1]

    [4]

    Zheng X J, Wu Q Y, Peng J F, He L, Feng X, Chen Y Q, Zhang D Z 2010 J. Mater. Sci. 45 3001

    [5]

    Sharma D K, Khosla R, Sharma S K

    [6]

    Zhang Y F, Wang C L, Zhao M L, Li J C, Zhang R Z 2009 Chin. Phys. B 18 1666

    [7]

    Lazareva I, Koval Y, Müller P, Müller K, Henkel K, Schmeisser D 2009 J. Appl. Phys. 105 054110

    [8]

    Lew C, Thompson M O

    [9]

    Ishiwara H 2012 Curr. Appl. Phys. 12 603

    [10]

    Sangran K D, Binod K R 2015 Chin. Phys. B 24 067702

    [11]

    Kim J W, Raghavan C M, Kim S S 2015 Ceramics International 41 1567

    [12]

    Lin P T, Li X, Zhang L, Yin J H, Cheng X W, Wang Z H, Wu Y C, Wu G H 2014 Chin. Phys. B 23 047701

    [13]

    Fang Y J, Gong G S, Gebru Z, Yuan S L 2014 Chin. Phys. B 23 128701

    [14]

    Lin Z B, Cai W, Jiang W H, Fu C L, Li C, Song Y X 2013 Ceramics International 39 8729

    [15]

    Zhu G D, Luo X Y, Zhang J H, Yan X J 2009 J. Appl. Phys. 106 074113

    [16]

    Luo X Y, Zhang J H, Yan X J, Zhu G D 2010 Chin. Phys. B 19 107702

    [17]

    Lü Z Y, Pu T S, Huang Y P, Meng X J, Xu H S 2015 Nanotechnology 26 055202

    [18]

    Wang J L, Liu B L, Zhao X L, Tian B B, Zou Y H, Sun S, Shen H, Sun J L, Meng X J, Chu J H 2014 Appl. Phys. Lett. 104 182907

    [19]

    Zhang X L, Du X L, Liu C L, Ji X, Xu H S 2015 Appl. Phys. Lett. 106 022906

    [20]

    Zhang X L, Du X L, Hou Y, Lü Z Y, Xu H S 2014 Appl. Phys. Lett. 104 103505

    [21]

    Scott J F, de Araujop C A P 1989 Science 246 1400

    [22]

    Yamada T, Kitayama T 1981 J. Appl. Phys. 52 6859

    [23]

    Koga K, Ohigashi H 1986 J. Appl. Phys. 59 2142

    [24]

    Xu H S, Fang X R, Liu X B, Wu S, Gu Y J, Meng X J, Sun J L, Chu J H

    [25]

    Naber R C G, Blom P W M, Marsman A W, Leeuw D M 2004 Appl. Phys. Lett. 85 2032

    [26]

    Naber R C G, Boer B D, Blom P W M, Leeuw D M D 2005 Appl. Phys. Lett. 87 203509

    [27]

    Mao D, Mejia I, Stiegler H, Gnade B E, Quevedo-Lopez M A 2010 J. Appl. Phys. 108 094102

    [28]

    Zhu G D, Zeng Z G, Zhang L, Yan X J 2006 Appl. Phys. Lett. 89 102905

    [29]

    Zhu G D, Gu Y, Yu H, Shao S F, Jiang Y L 2011 J. Appl. Phys. 110 024109

    [30]

    Wu Y J, Li X H, Weng Y Y, Hu Z J, Jonas A M 2014 Polymer 55 970

    [31]

    Zhang Q M, Xu H S, Fang X, Cheng Z Y, Xia F, You H 2001 J. Appl. Phys. 89 2631

    [32]

    Guo D, Setter N 2013 Macromolecules 46 1883

    [33]

    Xia F, Xu H S, Fang X, Razavi B, Cheng Z Y, Lu Y, Xu B M, Zhang Q M 2001 Appl. Phys. Lett. 78 1122

    [34]

    Zhu G D, Zeng Z G, Zhang L, Yan X J 2008 J. Appl. Polym. Sci. 107 3945

    [35]

    Zhang X L, Xu H S, Zhang Y N 2011 J. Phys. D: Appl. Phys. 44 155501

    [36]

    Zhang X L, Hou Y, Zhang Y, Lü Z Y, Xu G Q, Xu H S 2012 J. Appl. Phys. 112 074111

    [37]

    Reece T J, Gerber A, Kohlstedt H, Ducharme S 2010 J. Appl. Phys. 108 024109

    [38]

    Xu H S, Liu X B, Fang X R, Wu S, Xie H F, Li G B, Meng X J, Sun J L, Chu J H 2009 J. Appl. Phys. 105 034107

    [39]

    Xu H S, Zhang Y N, Zhang X L, Ma Y P 2011 Ferroelectrics 413 46

    [40]

    Ohigashi H, Barique M A 2001 Polymer 42 4981

    [41]

    Nguyen C A, Lee P S, Mhaisalkar S G 2007 Org. Electron. 8 415

    [42]

    Hu W J, Juo D M, You L, Wang J L, Chen Y C, Chu Y H, Wu T 2014 Scientific Reports 4 4772

    [43]

    Wang H 2004 Acta Phys. Sin. 53 1265 (in Chinese) [王华 2004 物理学报 53 1265]

    [44]

    Wen J H, Yang Q, Cao J X, Zhou Y C 2013 Acta Phys. Sin. 62 067701 (in Chinese) [文娟辉, 杨琼, 曹觉先, 周益春 2013 物理学报 62 067701]

    [45]

    Zhu G D, Xu J, Yan X J, Li J, Zeng Z G, Shen M, Zhang L 2006 Comput. Mater. Sci. 37 512

    [46]

    Guy I L, Limbong A, Zheng Z, Das-Gupta D K 2000 IEEE Transactions on Dielectrics and Electrical Insulation 7 489

    [47]

    Benz M, Euler W B, Gregory O J 2002 Macromolecules 35 2682

  • [1]

    Chen J Y, Yun Q, Gao W, Bai Y L, Nie C H, Zhao S F 2014 Mater. Lett. 136 11

    [2]

    Rodrigues S, Silva J, Khodorov A, Martín-Sánchez J, Pereira M, Gomes M 2013 Mater. Sci. Engineer. B 178 1224

    [3]

    Zhou Y C, Tang M H 2009 Mater. Rev. 23 1 (in Chinese) [周益春, 唐明华 2009 材料导报 23 1]

    [4]

    Zheng X J, Wu Q Y, Peng J F, He L, Feng X, Chen Y Q, Zhang D Z 2010 J. Mater. Sci. 45 3001

    [5]

    Sharma D K, Khosla R, Sharma S K

    [6]

    Zhang Y F, Wang C L, Zhao M L, Li J C, Zhang R Z 2009 Chin. Phys. B 18 1666

    [7]

    Lazareva I, Koval Y, Müller P, Müller K, Henkel K, Schmeisser D 2009 J. Appl. Phys. 105 054110

    [8]

    Lew C, Thompson M O

    [9]

    Ishiwara H 2012 Curr. Appl. Phys. 12 603

    [10]

    Sangran K D, Binod K R 2015 Chin. Phys. B 24 067702

    [11]

    Kim J W, Raghavan C M, Kim S S 2015 Ceramics International 41 1567

    [12]

    Lin P T, Li X, Zhang L, Yin J H, Cheng X W, Wang Z H, Wu Y C, Wu G H 2014 Chin. Phys. B 23 047701

    [13]

    Fang Y J, Gong G S, Gebru Z, Yuan S L 2014 Chin. Phys. B 23 128701

    [14]

    Lin Z B, Cai W, Jiang W H, Fu C L, Li C, Song Y X 2013 Ceramics International 39 8729

    [15]

    Zhu G D, Luo X Y, Zhang J H, Yan X J 2009 J. Appl. Phys. 106 074113

    [16]

    Luo X Y, Zhang J H, Yan X J, Zhu G D 2010 Chin. Phys. B 19 107702

    [17]

    Lü Z Y, Pu T S, Huang Y P, Meng X J, Xu H S 2015 Nanotechnology 26 055202

    [18]

    Wang J L, Liu B L, Zhao X L, Tian B B, Zou Y H, Sun S, Shen H, Sun J L, Meng X J, Chu J H 2014 Appl. Phys. Lett. 104 182907

    [19]

    Zhang X L, Du X L, Liu C L, Ji X, Xu H S 2015 Appl. Phys. Lett. 106 022906

    [20]

    Zhang X L, Du X L, Hou Y, Lü Z Y, Xu H S 2014 Appl. Phys. Lett. 104 103505

    [21]

    Scott J F, de Araujop C A P 1989 Science 246 1400

    [22]

    Yamada T, Kitayama T 1981 J. Appl. Phys. 52 6859

    [23]

    Koga K, Ohigashi H 1986 J. Appl. Phys. 59 2142

    [24]

    Xu H S, Fang X R, Liu X B, Wu S, Gu Y J, Meng X J, Sun J L, Chu J H

    [25]

    Naber R C G, Blom P W M, Marsman A W, Leeuw D M 2004 Appl. Phys. Lett. 85 2032

    [26]

    Naber R C G, Boer B D, Blom P W M, Leeuw D M D 2005 Appl. Phys. Lett. 87 203509

    [27]

    Mao D, Mejia I, Stiegler H, Gnade B E, Quevedo-Lopez M A 2010 J. Appl. Phys. 108 094102

    [28]

    Zhu G D, Zeng Z G, Zhang L, Yan X J 2006 Appl. Phys. Lett. 89 102905

    [29]

    Zhu G D, Gu Y, Yu H, Shao S F, Jiang Y L 2011 J. Appl. Phys. 110 024109

    [30]

    Wu Y J, Li X H, Weng Y Y, Hu Z J, Jonas A M 2014 Polymer 55 970

    [31]

    Zhang Q M, Xu H S, Fang X, Cheng Z Y, Xia F, You H 2001 J. Appl. Phys. 89 2631

    [32]

    Guo D, Setter N 2013 Macromolecules 46 1883

    [33]

    Xia F, Xu H S, Fang X, Razavi B, Cheng Z Y, Lu Y, Xu B M, Zhang Q M 2001 Appl. Phys. Lett. 78 1122

    [34]

    Zhu G D, Zeng Z G, Zhang L, Yan X J 2008 J. Appl. Polym. Sci. 107 3945

    [35]

    Zhang X L, Xu H S, Zhang Y N 2011 J. Phys. D: Appl. Phys. 44 155501

    [36]

    Zhang X L, Hou Y, Zhang Y, Lü Z Y, Xu G Q, Xu H S 2012 J. Appl. Phys. 112 074111

    [37]

    Reece T J, Gerber A, Kohlstedt H, Ducharme S 2010 J. Appl. Phys. 108 024109

    [38]

    Xu H S, Liu X B, Fang X R, Wu S, Xie H F, Li G B, Meng X J, Sun J L, Chu J H 2009 J. Appl. Phys. 105 034107

    [39]

    Xu H S, Zhang Y N, Zhang X L, Ma Y P 2011 Ferroelectrics 413 46

    [40]

    Ohigashi H, Barique M A 2001 Polymer 42 4981

    [41]

    Nguyen C A, Lee P S, Mhaisalkar S G 2007 Org. Electron. 8 415

    [42]

    Hu W J, Juo D M, You L, Wang J L, Chen Y C, Chu Y H, Wu T 2014 Scientific Reports 4 4772

    [43]

    Wang H 2004 Acta Phys. Sin. 53 1265 (in Chinese) [王华 2004 物理学报 53 1265]

    [44]

    Wen J H, Yang Q, Cao J X, Zhou Y C 2013 Acta Phys. Sin. 62 067701 (in Chinese) [文娟辉, 杨琼, 曹觉先, 周益春 2013 物理学报 62 067701]

    [45]

    Zhu G D, Xu J, Yan X J, Li J, Zeng Z G, Shen M, Zhang L 2006 Comput. Mater. Sci. 37 512

    [46]

    Guy I L, Limbong A, Zheng Z, Das-Gupta D K 2000 IEEE Transactions on Dielectrics and Electrical Insulation 7 489

    [47]

    Benz M, Euler W B, Gregory O J 2002 Macromolecules 35 2682

  • [1] 王一, 杨晨, 郭祥, 王继红, 刘雪飞, 魏节敏, 郎啟智, 罗子江, 丁召. Al0.17Ga0.83As/GaAs(001)薄膜退火过程的热力学分析. 物理学报, 2018, 67(8): 080503. doi: 10.7498/aps.67.20172718
    [2] 陈剑辉, 杨静, 沈艳娇, 李锋, 陈静伟, 刘海旭, 许颖, 麦耀华. 后退火增强氢化非晶硅钝化效果的研究. 物理学报, 2015, 64(19): 198801. doi: 10.7498/aps.64.198801
    [3] 张彬, 王伟丽, 牛巧利, 邹贤劭, 董军, 章勇. H2气氛退火处理对Nb掺杂TiO2薄膜光电性能的影响. 物理学报, 2014, 63(6): 068102. doi: 10.7498/aps.63.068102
    [4] 郭巧能, 曹义刚, 孙强, 刘忠侠, 贾瑜, 霍裕平. 温度对超薄铜膜疲劳性能影响的分子动力学模拟. 物理学报, 2013, 62(10): 107103. doi: 10.7498/aps.62.107103
    [5] 顾珊珊, 胡晓君, 黄凯. 退火温度对硼掺杂纳米金刚石薄膜微结构和p型导电性能的影响. 物理学报, 2013, 62(11): 118101. doi: 10.7498/aps.62.118101
    [6] 刘建朋, 朱彦旭, 郭伟玲, 闫微微, 吴国庆. ITO退火对GaN基LED电学特性的影响. 物理学报, 2012, 61(13): 137303. doi: 10.7498/aps.61.137303
    [7] 罗庆洪, 娄艳芝, 赵振业, 杨会生. 退火对AlTiN多层薄膜结构及力学性能影响. 物理学报, 2011, 60(6): 066201. doi: 10.7498/aps.60.066201
    [8] 胡美娇, 李成, 徐剑芳, 赖虹凯, 陈松岩. 循环氧化/退火制备GeOI薄膜材料及其性质研究. 物理学报, 2011, 60(7): 078102. doi: 10.7498/aps.60.078102
    [9] 杨帆, 马瑾, 孔令沂, 栾彩娜, 朱振. 金属有机物化学气相沉积法生长Ga2(1-x)In2xO3薄膜的结构及光电性能研究. 物理学报, 2009, 58(10): 7079-7082. doi: 10.7498/aps.58.7079
    [10] 宋超, 陈谷然, 徐骏, 王涛, 孙红程, 刘宇, 李伟, 陈坤基. 不同退火温度下晶化硅薄膜的电学输运性质. 物理学报, 2009, 58(11): 7878-7883. doi: 10.7498/aps.58.7878
    [11] 王 楠, 孔春阳, 朱仁江, 秦国平, 戴特力, 南 貌, 阮海波. p型ZnO薄膜的制备及特性. 物理学报, 2007, 56(10): 5974-5978. doi: 10.7498/aps.56.5974
    [12] 张锡健, 马洪磊, 王卿璞, 马 瑾, 宗福建, 肖洪地, 计 峰. 退火温度对低温生长MgxZn1-xO薄膜光学性质的影响. 物理学报, 2006, 55(1): 437-440. doi: 10.7498/aps.55.437
    [13] 孙成伟, 刘志文, 张庆瑜. 退火温度对ZnO薄膜结构和发光特性的影响. 物理学报, 2006, 55(1): 430-436. doi: 10.7498/aps.55.430
    [14] 李伙全, 宁兆元, 程珊华, 江美福. 射频磁控溅射沉积的ZnO薄膜的光致发光中心与漂移. 物理学报, 2004, 53(3): 867-870. doi: 10.7498/aps.53.867
    [15] 张德恒, 王卿璞, 薛忠营. 不同衬底上的ZnO薄膜紫外光致发光. 物理学报, 2003, 52(6): 1484-1487. doi: 10.7498/aps.52.1484
    [16] 方泽波, 龚恒翔, 刘雪芹, 徐大印, 黄春明, 王印月. 退火对多晶ZnO薄膜结构与发光特性的影响. 物理学报, 2003, 52(7): 1748-1751. doi: 10.7498/aps.52.1748
    [17] 朱明刚, 李卫, 董生智, 李岫梅. Ga替代对纳米晶Nd(Fe,Co)B黏结磁体磁性能的影响. 物理学报, 2001, 50(8): 1600-1604. doi: 10.7498/aps.50.1600
    [18] 郭栋, 蔡锴, 李龙土, 桂治轮. 电解有机溶液法在Si表面制备类金刚石薄膜及退火对其结构的影响. 物理学报, 2001, 50(12): 2413-2417. doi: 10.7498/aps.50.2413
    [19] 王永谦, 陈长勇, 陈维德, 杨富华, 刁宏伟, 许振嘉, 张世斌, 孔光临, 廖显伯. a-Si∶O∶H薄膜微结构及其高温退火行为研究. 物理学报, 2001, 50(12): 2418-2422. doi: 10.7498/aps.50.2418
    [20] 童六牛, 何贤美, 鹿 牧. 真空退火对周期性界面掺杂Ni80Co20薄膜磁性的影响. 物理学报, 2000, 49(11): 2290-2295. doi: 10.7498/aps.49.2290
计量
  • 文章访问数:  5520
  • PDF下载量:  261
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-11
  • 修回日期:  2015-07-03
  • 刊出日期:  2015-08-05

/

返回文章
返回