搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

横向偏置场作用的非晶带巨磁阻抗效应理论

鲍丙豪 任乃飞 骆英

引用本文:
Citation:

横向偏置场作用的非晶带巨磁阻抗效应理论

鲍丙豪, 任乃飞, 骆英

Theory of giant magneto-impedance effect in amorphous ribbon with transverse bias magnetic field

Bao Bing-Hao, Ren Nai-Fei, Luo Ying
PDF
导出引用
  • 采用多畴结构模型,考虑非晶带具有180°畴壁的磁畴及其两面的偏置磁场方向的不同,根据自由能最小原理,Maxwell方程组及带阻尼项的Landau-Lifshitz方程,建立了非晶态合金带在横向偏置磁场作用下的巨磁阻抗效应的理论计算公式. 提出并采用四状态平均磁导率代替单畴模型获得的磁导率,得到了更符合实际的处于偏置场作用的阻抗随外磁场变化的理论结果.
    Taking into account the amorphous alloy ribbon with the 180°magnetic domain walls and transverse bias magnetic field, and adopting multi-domain structure model, the theory of giant magneto-impedance (GMI) effect was found by minimizing the total free energy and by the solution of the Maxwell’s equations combining with Landau-Lifshitz equation. A new four-state method is proposed to calculate the average magnetic permeability of four states of the amorphous materials, which is used to replace the permeability obtained based on the single domain model. The method has an advantage in explaining the GMI effect over the theory established by single domain model.
    • 基金项目: 安徽省自然科学基金(批准号:01042309),国家自然科学基金(批准号:50575100)和江苏大学高级人才专项基金(批准号:03JDG-012)资助的课题.
    [1]

    Panina L V, Mohri K, Bushida K, Noda M 1994 J. Appl. Phys. 76 6198

    [2]

    Panina L V, Mohri K 1994 Appl. Phys. Lett. 65 1189

    [3]

    Correa M A, Viegas A D C, Silva R B, Andrade A M H, Sommer R L 2007 J. Appl. Phys. 101 043905

    [4]

    Jantaratana P, Bebenin N G, Kurlyandskaya G V 2009 J. Appl. Phys. 105 013908

    [5]

    Pan H L, Cheng J K, Zhao Z J, He J K, Ruan J Z, Yang X L, Yuan W Z 2008 Acta. Phys. Sin. 57 3230 (in Chinese)[潘海林、程金科、赵振杰、何家康、阮建中、扬燮龙、袁望治 2008 物理学报 57 3230]

    [6]

    Correa M A,Bohn F,Viegas A D C, Carara M A, Schelp L F, Sommer R L 2008 J. Magn. Magn. Mater. 320 25

    [7]

    Yoon S S, Lee B S, Rheem Y W, Ahn S J, Kim C G, Kim C O 2003 IEEE Trans. Magn. 39 3292

    [8]

    Garcia C, Chizhik A, Zhukov A, Zhukova V, Gonzalez J, Blanco J M, Panina L V 2007 J. Magn. Magn. Mater. 316 896

    [9]

    Yang Q M, Xu Q M,Fang Y Z,Mo C J 2009 Acta. Phys. Sin. 58 4072 (in Chinese)[杨全民、许启明、方允樟、莫婵娟 2009 物理学报 58 4072 ]

    [10]

    Pan H, Li G, Wang Z J 2008 Acta. Phys. Sin. 57 7194(in Chinese)[庞 浩、李 根、王赞基 2008 物理学报 57 7194]

    [11]

    Zhang S L, Sun J F, Xing D W2010 Acta. Phys. Sin. 59 2068(in Chinese)[张树玲、孙剑飞、刑大伟 2010 物理学报 59 2068]

    [12]

    Kurlyandskaya G V, Fal V, Saad A, Asua E, Rodriguez J 2007 J. Appl. Phys. 101 054505

    [13]

    Alves F,Rached L A,Moutoussamy,Coillot C 2008 Sensors and Actuators A 142 459

    [14]

    Han B, Zhang T, Zhang K, Yao B, Yue X L, Huang D Y, Ren H, Tang X Y 2008 IEEE Trans. Magn. 44 605

    [15]

    Leroy P,Coillot C,Mosser V,Roux A,Chanteur G 2008 Sensors and Actuators A 142 503

    [16]

    Kraus L 1999 J. Magn. Magn. Mater. 196-197 354

    [17]

    Bao B H, Song X F, Ren N F, Li C S 2006 Acta. Phys. Sin. 55 3698 (in Chinese)[鲍丙豪、宋雪丰、任乃飞、李长生 2006 物理学报 55 3698]

    [18]

    Antonov A S, Iakubov I T,Lagarkov A N 1998 J. Magn. Magn. Mater. 187 252

    [19]

    Makhnovskiy D P, Panina L V, Mapps D J 2001 Phys. Rev. B 63 144424

    [20]

    Buznikov N A, Antonov A S, Kim C G 2005 J. Magn. Magn. Mater. 285 101

    [21]

    Zhong Z Y, Lan Z W, Zhang H W, Liu Y L, Wang H C 2001 Acta. Phys. Sin. 50 1610 (in Chinese) [钟志勇、兰中文、张怀武、刘颖力、王豪才 2001 物理学报 50 1610]

    [22]

    Panina L V, Mohri K, Uchiyama T, Noda M 1995 IEEE Trans. Magn. 31 1429

    [23]

    Hendrych A, Zivotsky O, Postava K, Pistora J, Kraus L, Kubinek R 2009 J. Magn. Magn. Mater. 321 3771

  • [1]

    Panina L V, Mohri K, Bushida K, Noda M 1994 J. Appl. Phys. 76 6198

    [2]

    Panina L V, Mohri K 1994 Appl. Phys. Lett. 65 1189

    [3]

    Correa M A, Viegas A D C, Silva R B, Andrade A M H, Sommer R L 2007 J. Appl. Phys. 101 043905

    [4]

    Jantaratana P, Bebenin N G, Kurlyandskaya G V 2009 J. Appl. Phys. 105 013908

    [5]

    Pan H L, Cheng J K, Zhao Z J, He J K, Ruan J Z, Yang X L, Yuan W Z 2008 Acta. Phys. Sin. 57 3230 (in Chinese)[潘海林、程金科、赵振杰、何家康、阮建中、扬燮龙、袁望治 2008 物理学报 57 3230]

    [6]

    Correa M A,Bohn F,Viegas A D C, Carara M A, Schelp L F, Sommer R L 2008 J. Magn. Magn. Mater. 320 25

    [7]

    Yoon S S, Lee B S, Rheem Y W, Ahn S J, Kim C G, Kim C O 2003 IEEE Trans. Magn. 39 3292

    [8]

    Garcia C, Chizhik A, Zhukov A, Zhukova V, Gonzalez J, Blanco J M, Panina L V 2007 J. Magn. Magn. Mater. 316 896

    [9]

    Yang Q M, Xu Q M,Fang Y Z,Mo C J 2009 Acta. Phys. Sin. 58 4072 (in Chinese)[杨全民、许启明、方允樟、莫婵娟 2009 物理学报 58 4072 ]

    [10]

    Pan H, Li G, Wang Z J 2008 Acta. Phys. Sin. 57 7194(in Chinese)[庞 浩、李 根、王赞基 2008 物理学报 57 7194]

    [11]

    Zhang S L, Sun J F, Xing D W2010 Acta. Phys. Sin. 59 2068(in Chinese)[张树玲、孙剑飞、刑大伟 2010 物理学报 59 2068]

    [12]

    Kurlyandskaya G V, Fal V, Saad A, Asua E, Rodriguez J 2007 J. Appl. Phys. 101 054505

    [13]

    Alves F,Rached L A,Moutoussamy,Coillot C 2008 Sensors and Actuators A 142 459

    [14]

    Han B, Zhang T, Zhang K, Yao B, Yue X L, Huang D Y, Ren H, Tang X Y 2008 IEEE Trans. Magn. 44 605

    [15]

    Leroy P,Coillot C,Mosser V,Roux A,Chanteur G 2008 Sensors and Actuators A 142 503

    [16]

    Kraus L 1999 J. Magn. Magn. Mater. 196-197 354

    [17]

    Bao B H, Song X F, Ren N F, Li C S 2006 Acta. Phys. Sin. 55 3698 (in Chinese)[鲍丙豪、宋雪丰、任乃飞、李长生 2006 物理学报 55 3698]

    [18]

    Antonov A S, Iakubov I T,Lagarkov A N 1998 J. Magn. Magn. Mater. 187 252

    [19]

    Makhnovskiy D P, Panina L V, Mapps D J 2001 Phys. Rev. B 63 144424

    [20]

    Buznikov N A, Antonov A S, Kim C G 2005 J. Magn. Magn. Mater. 285 101

    [21]

    Zhong Z Y, Lan Z W, Zhang H W, Liu Y L, Wang H C 2001 Acta. Phys. Sin. 50 1610 (in Chinese) [钟志勇、兰中文、张怀武、刘颖力、王豪才 2001 物理学报 50 1610]

    [22]

    Panina L V, Mohri K, Uchiyama T, Noda M 1995 IEEE Trans. Magn. 31 1429

    [23]

    Hendrych A, Zivotsky O, Postava K, Pistora J, Kraus L, Kubinek R 2009 J. Magn. Magn. Mater. 321 3771

计量
  • 文章访问数:  5706
  • PDF下载量:  682
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-11-05
  • 修回日期:  2010-06-11
  • 刊出日期:  2011-03-15

横向偏置场作用的非晶带巨磁阻抗效应理论

  • 1. (1)江苏大学机械工程学院,镇江 212013; (2)江苏大学理学院,镇江 212013
    基金项目: 安徽省自然科学基金(批准号:01042309),国家自然科学基金(批准号:50575100)和江苏大学高级人才专项基金(批准号:03JDG-012)资助的课题.

摘要: 采用多畴结构模型,考虑非晶带具有180°畴壁的磁畴及其两面的偏置磁场方向的不同,根据自由能最小原理,Maxwell方程组及带阻尼项的Landau-Lifshitz方程,建立了非晶态合金带在横向偏置磁场作用下的巨磁阻抗效应的理论计算公式. 提出并采用四状态平均磁导率代替单畴模型获得的磁导率,得到了更符合实际的处于偏置场作用的阻抗随外磁场变化的理论结果.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回