搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

EAST托卡马克钨杂质上下不对称性分布的实验研究

赵伟宽 张凌 程云鑫 周呈熙 张文敏 段艳敏 胡爱兰 王守信 张丰玲 李政伟 曹一鸣 刘海庆

引用本文:
Citation:

EAST托卡马克钨杂质上下不对称性分布的实验研究

赵伟宽, 张凌, 程云鑫, 周呈熙, 张文敏, 段艳敏, 胡爱兰, 王守信, 张丰玲, 李政伟, 曹一鸣, 刘海庆

Experimental study on up-down asymmetry of tungsten impurities in EAST tokamak

Zhao Wei-Kuan, Zhang Ling, Cheng Yun-Xin, Zhou Cheng-Xi, Zhang Wen-Min, Duan Yan-Min, Hu Ai-Lan, Wang Shou-Xin, Zhang Feng-Ling, Li Zheng-Wei, Cao Yi-Ming, Liu Hai-Qing
PDF
HTML
导出引用
  • 基于EAST托卡马克装置高性能极紫外空间分辨杂质光谱仪, 本文首次开展了磁约束聚变装置高Z杂质上下不对称分布的实验研究. 实验结果显示, 在同向中性束注入期间, 等离子体芯部环向旋转速度Vt0较大, 钨杂质上下不对称性较强, 且辐射(密度)较强的一侧背离离子$B\times \nabla B$漂移方向; 当从上外偏滤器充气口注入氘化甲烷气体后, Vt0迅速下降, 原有上下不对称性发生反转. 因此我们针对近似条件下W32+杂质离子特征线辐射不对称因子Iu/IdVt0依赖关系开展了进一步的统计分析. 结果表明, Iu/Id正相关于Vt0, 当Vt0 < 20 km/s以下时, 不对称性发生反转. 上述现象从实验角度验证了漂移动理学的理论预测, 说明环向旋转带来的离心力影响了杂质离子平行于磁场方向的动量守恒, 作为直接诱因, 造成了高Z杂质密度的上下不对称分布, 进而影响辐射的分布. 本文对钨杂质上下不对称性分布的实验观测为进一步开展高Z杂质极向输运的机理研究打下了坚实的基础, 并为今后聚变堆高Z杂质控制提供重要的参考.
    By using the high-performance extreme ultraviolet spatial resolution impurity spectrometer, the up-down asymmetric distribution of tungsten impurity radiation in EAST tokamak is studied experimentally for the first time. The results show that during the co-directional neutral beam injection, the central toroidal rotation velocity is large, the up-down asymmetry is strong, and the side with strong radiation deviates from ion $B\times \nabla B$ drift direction. However, after injecting deuterated methane CD4 into plasma through the valve of the upper divertor outer plate, the central toroidal rotation velocity decreases rapidly, and the asymmetry of the original tungsten impurity radiation decreases soon and finally reverses. In this work, a further statistical study of the W32+ impurity radiation asymmetry factor Iu/Id depending on the central toroidal rotation velocity Vt0 is performed. The results show that when Vt0 is larger than 30 km/s, the side with strong radiation deviates from ion $B\times \nabla B$ drift direction, however, when Vt0 decreases to below 20 km/s, the asymmetry can be reversed. The relation of toroidal rotation velocity with impurity radiation asymmetry validates the prediction from drift-kinetic theory, and demonstrates that the centrifugal force induced by the toroidal rotation directly causes the asymmetric distribution of tungsten impurities through affecting the momentum conservation parallel to the magnetic field. The experimental observation of the asymmetric distribution of tungsten impurities in this work lays a solid foundation for further studying the poloidal transport of high-Z impurities and provides some important references for controlling the high-Z impurities in future fusion reactors.
      通信作者: 张凌, zhangling@ipp.ac.cn ; 周呈熙, cxzhou@ustc.edu.cn
    • 基金项目: 科技部国家磁约束核聚变能发展研究专项青年科学家项目(批准号: 2022YFE03180400)和国家自然科学基金优秀青年科学基金(批准号: 12322512)资助的课题.
      Corresponding author: Zhang Ling, zhangling@ipp.ac.cn ; Zhou Cheng-Xi, cxzhou@ustc.edu.cn
    • Funds: Project supported by the National Magnetic Confinement Fusion Program of China (Grant No. 2022YFE03180400) and the National Natural Science Foundation for Excellent Young Scholars of China (Grant No. 12322512).
    [1]

    Zhang W M, Zhang L, Cheng Y X, Morita S, Wang Z X, Hu A L, Zhang F L, Duan Y M, Zhou T F, Wang S X 2022 Phys. Scr. 97 045604Google Scholar

    [2]

    Van Rooij G J, Coenen J W, Aho-Mantila L, Brezinsek S, Clever M, Dux R, Groth M, Krieger K, Marsen S, Matthews G F, Meigs A, Neu R, Potzel S, Pütterich T, Rapp J, Stamp M F 2013 J. Nucl. Mater. 438 S42Google Scholar

    [3]

    Wan B N, Gong X Z, Liang Y, Xiang N, Xu G S, Sun Y, Wang L, Qian J P, Liu H Q, Zhang B, Xia T Y, Huang J, Ding R, Zhang T, Zuo G Z, Sun Z, Zeng L, Zhang X J, Zang Q, Lyu B, Garofalo A M, Li G Q, Li K D, Yang Q Q and for the EAST Team and Collaborators 2022 Nucl. Fusion 62 042010Google Scholar

    [4]

    Gao X, Zeng L, Wu M Q, Zhang T, Yang Y, Ming T F, Zhu X, Wang Y M, Liu H Q, Zang Q, Li G Q, Huang J, Gong X Z, Li Y Y, Li J G, Wan Y X and the EAST team 2020 Nucl. Fusion 60 102001Google Scholar

    [5]

    Terry J L, Marmar E S, Chen K I, Moos H W 1977 Phys. Rev. Lett. 39 1615.Google Scholar

    [6]

    Brau K, Suckewer S, Wong S K 1983 Nucl. Fusion 23 1657Google Scholar

    [7]

    Rice J E, Reinke M L, Cao N, Hughes J W, Ashbourn J M A, Ernst D R, Hubbard A E, Irby J H 2018 Nucl. Fusion 58 126008Google Scholar

    [8]

    Zhang D, Burhenn R, Beidler C D, Feng Y, Thomsen H, Brandt C, Buller S, Reimold F, Hacker P, Laube R, Geiger J, García Regaña J M, Smith H M, König R, Giannone L, Penzel F, Klinger T, Baldzuhn J, Bozhenkov S, Bräuer T, Brunner J K, Buttenschön B, Damm H, Endler M, Effenberg F, Fuchert G, Gao Y, Jakubowski M, Knauer J, Kremeyer T, Krychowiak M, Kwak S, Laqua H P, Langenberg A, Otte M, PablantN, Pasch E, Rahbarnia K, Pavone A, Rudischhauser L, Svensson J, Killer C, Windisch T, the W7-X Team 2021 Nucl. Fusion 61 116043Google Scholar

    [9]

    Hinton F L, Hazeltine R D 1976 Rev. Mod. Phys. 48 239Google Scholar

    [10]

    Hinton F L, Wong S K 1985 Phys. Fluids 28 3082Google Scholar

    [11]

    Wong S K 1987 Phys. Fluids 30 818Google Scholar

    [12]

    王文章, 向玲燕, 吴金华, 杨钟时, 丁芳, 王亮, 段艳敏, 胡振华, 毛红敏, 罗广南 2016 核聚变与等离子体物理 36 42Google Scholar

    Wang W Z, Xiang L Y, Wu J H, Yang Z S, Ding F, Wang L, Duan Y M, Hu Z H, Mao H M, Luo G N 2016 Nuclear Fusion Plasma Phys. 36 42Google Scholar

    [13]

    Zhao L M, Shan J F, Liu F K, Jia H, Wang M, Liu L, Wang X J, Xu H D, the LHCD team 2010 Plasma Sci. Technol. 12 118Google Scholar

    [14]

    Xu H D, Wang X J, Liu F K, Zhang J, Huang Y Y, Han J F, Wu D J, Hu H C, Li B, Li M H, Yang Y, Feng J Q, Xu W Y, Tang Y Y, Wei W, Xu L Q, Liu Y, Zhao H L, Lohr J, Gorelov Y A, Anderson J P, Ma W D, Wu Z G, Wang J, Zhang L Y, Guo F, Sun H Z, Yan X S, East Team 2016 Plasma Sci. Technol. 18 442Google Scholar

    [15]

    Zhao Y P, Zhang X J, Man Y Z, Yuan S, Xue D Y, Deng X, Wang L, Ju S Q, Cheng Y, Qin C M, Chen G, Lin Y, Li J G, Wan B N, Song Y T, Braun F, Kumazawa R, Wukitch S 2014 Fusion Eng. Des. 89 2642Google Scholar

    [16]

    刘成岳, 陈美霞, 吴斌 2017 核聚变与等离子体物理 37 313Google Scholar

    Liu C Y, Chen M X, Wu B 2017 Nuclear Fusion Plasma Phys. 37 313Google Scholar

    [17]

    Zhang L, Morita S, Xu Z, Wu Z W, Zhang P F, Wu C R, Gao W, Ohishi T, Goto M, Shen J S, Chen Y J, Liu X, Wang Y M, Dong C F, Zhang H M, Huang X L, Gong X Z, Hu L Q, Chen J L, Zhang X D, Wan B N, Li J G 2015 Rev. Sci. Instrum 86 123509Google Scholar

    [18]

    Xu Z, Zhang L, Cheng Y X, Morita S, Li L, Zhang W M, Zhang F L, Zhao Z H, Zhou T F, Wu Z W, Lin X D, Gao X, Ding X B, Yang Y, Liu H Q 2021 Nucl. Instrum. Methods Phys. Res. A 1010 165545Google Scholar

    [19]

    Zhang L, Morita S, Wu Z W, Xu Z, Yang X D, Cheng Y X, Zang Q, Liu H Q, Liu Y, Zhang H M, Ohishi T, Chen Y J, Xu L Q, Wu C R, Duan Y M, Gao W, Huang J, Gong X Z, Hu L Q 2019 Nucl. Instrum. Methods Phys. Res. A 916 169Google Scholar

    [20]

    Versloot T W, de Vries P C, Giroud C, Brix M, von Hellermann M G, Lomas P J, Moulton D, Mullane M O', Nunes I M, Salmi A, Tala T, Voitsekhovitch I, Zastrow K D, JET-EFDA Contributors 2011 Plasma. Phys. Control. Fusion 53 065017Google Scholar

    [21]

    Angioni C, Helander P 2014 Plasma. Phys. Control. Fusion 56 124001Google Scholar

    [22]

    Fülöp T, Helander P 1999 Phys. Plasmas 6 3066Google Scholar

    [23]

    Angioni C 2021 Plasma. Phys. Control. Fusion 63 073001Google Scholar

  • 图 1  EAST极向截面、上单零位形(绿色线为最外磁面)以及3套极紫外光谱仪的观测弦(湛蓝色为EUV_Short, 红色为EUV_Long, 蓝色为EUV_Long2)

    Fig. 1.  Poloidal cross section of EAST tokamak with upper single null (USN) plasma and the lines of sight (LOS) of three EUV spectrometers (azure blue is EUV_Short, red is EUV_Long, blue is EUV_Long2).

    图 2  EAST上不同类型的典型杂质辐射强度剖面 (a)芯部峰化分布; (b)近似对称(Iu/Id = 1)的双峰分布; (c)不对称性朝上(Iu/Id > 1)的双峰分布; (d)不对称性朝下(Iu/Id < 1)的双峰分布, 其中灰色虚线表示磁轴$ \rho =0 $所在的中平面位置

    Fig. 2.  Typical vertical profiles of normalized intensity of impurity lines: (a) Peaked profile; (b) symmetrical profile with double peaks (Iu/Id = 1); (c) upward asymmetrical profile (Iu/Id > 1); (d) downward asymmetrical profile (Iu/Id < 1). The gray dash line indicates the mid-plane where $ \rho =0 $ locates.

    图 3  EAST #93801放电波形图 (a)等离子体电流Ip; (b)低杂波加热功率PLHW及电子回旋加热功率PECRH; (c)中性束加热功率PNBI1L; (d)弦平均电子密度ne和芯部电子温度Te0; (e) O窗口上外充气口的充气阀门电压; (f)上偏滤器Dα信号; (g) CVI (C5+, 33.73 Å)线辐射强度; (h)钨未分解跃迁系辐射强度(W-UTA, 45—70 Å); (i)芯部环向旋转速度Vt0; (j) W27+ 51.457 Å, W32+ 52.2 Å线辐射不对称性因子Iu/Id

    Fig. 3.  Time evolution of (a) plasma current, Ip; (b) heating power from lower hybrid wave, PLHW, and electron cyclotron wave, PECRH; (c) heating power from neutral beam injection, PNBI1L; (d) line-averaged electron density, ne, and central electron temperature, Te0; (e) valve voltage of upper outboard gas puff inlet located at window “O”; (f) Dα signal of upper divertor; (g) line emission intensity of CVI (C5+ at 33.73 Å); (h) line emission intensity of tungsten in unresolved transition array (W-UTA at 45–70 Å); (i) central toroidal rotation velocity, Vt0; (j) asymmetry factor Iu/Id of line emission intensity for W27+ at 51.457 Å, W32+ at 52.2 Å for EAST discharge #93801.

    图 4  EAST #93801在t1 = 2.4—2.6 s (蓝色)、t2 = 3.6—3.8 s (红色)、t3 = 5.0—5.2 s (绿色)时间段内钨不同电离态线辐射剖面 (a), (d) W27+ 51.457 Å; (b), (e) W32+ 52.2 Å; (c), (f) W44+ 60.93 Å. (a)—(c)为归一化辐射强度, (d)—(f)为原始光谱强度计数

    Fig. 4.  Vertical profiles of line emission intensity for (a), (d), W27+ 51.457 Å; (b), (e), W32+ 52.2 Å; (c), (f) W44+ 60.93 Å during t1 = 2.4–2.6 s (blue), t2 = 3.6–3.8 s (red) and t3 = 5.0–5.2 s (green) in EAST discharge # 93801. Normalized line intensity Inor in (a)–(c), and raw line intensity I in (d)—(f) .

    图 5  W32+ 52.2 Å线辐射强度不对称因子Iu/Id随芯部环向旋转速度Vt0的变化

    Fig. 5.  Asymmetry factor Iu/Id of line emission intensity for W32+ 52.2 Å as a function of central toroidal rotation velocity, Vt0.

  • [1]

    Zhang W M, Zhang L, Cheng Y X, Morita S, Wang Z X, Hu A L, Zhang F L, Duan Y M, Zhou T F, Wang S X 2022 Phys. Scr. 97 045604Google Scholar

    [2]

    Van Rooij G J, Coenen J W, Aho-Mantila L, Brezinsek S, Clever M, Dux R, Groth M, Krieger K, Marsen S, Matthews G F, Meigs A, Neu R, Potzel S, Pütterich T, Rapp J, Stamp M F 2013 J. Nucl. Mater. 438 S42Google Scholar

    [3]

    Wan B N, Gong X Z, Liang Y, Xiang N, Xu G S, Sun Y, Wang L, Qian J P, Liu H Q, Zhang B, Xia T Y, Huang J, Ding R, Zhang T, Zuo G Z, Sun Z, Zeng L, Zhang X J, Zang Q, Lyu B, Garofalo A M, Li G Q, Li K D, Yang Q Q and for the EAST Team and Collaborators 2022 Nucl. Fusion 62 042010Google Scholar

    [4]

    Gao X, Zeng L, Wu M Q, Zhang T, Yang Y, Ming T F, Zhu X, Wang Y M, Liu H Q, Zang Q, Li G Q, Huang J, Gong X Z, Li Y Y, Li J G, Wan Y X and the EAST team 2020 Nucl. Fusion 60 102001Google Scholar

    [5]

    Terry J L, Marmar E S, Chen K I, Moos H W 1977 Phys. Rev. Lett. 39 1615.Google Scholar

    [6]

    Brau K, Suckewer S, Wong S K 1983 Nucl. Fusion 23 1657Google Scholar

    [7]

    Rice J E, Reinke M L, Cao N, Hughes J W, Ashbourn J M A, Ernst D R, Hubbard A E, Irby J H 2018 Nucl. Fusion 58 126008Google Scholar

    [8]

    Zhang D, Burhenn R, Beidler C D, Feng Y, Thomsen H, Brandt C, Buller S, Reimold F, Hacker P, Laube R, Geiger J, García Regaña J M, Smith H M, König R, Giannone L, Penzel F, Klinger T, Baldzuhn J, Bozhenkov S, Bräuer T, Brunner J K, Buttenschön B, Damm H, Endler M, Effenberg F, Fuchert G, Gao Y, Jakubowski M, Knauer J, Kremeyer T, Krychowiak M, Kwak S, Laqua H P, Langenberg A, Otte M, PablantN, Pasch E, Rahbarnia K, Pavone A, Rudischhauser L, Svensson J, Killer C, Windisch T, the W7-X Team 2021 Nucl. Fusion 61 116043Google Scholar

    [9]

    Hinton F L, Hazeltine R D 1976 Rev. Mod. Phys. 48 239Google Scholar

    [10]

    Hinton F L, Wong S K 1985 Phys. Fluids 28 3082Google Scholar

    [11]

    Wong S K 1987 Phys. Fluids 30 818Google Scholar

    [12]

    王文章, 向玲燕, 吴金华, 杨钟时, 丁芳, 王亮, 段艳敏, 胡振华, 毛红敏, 罗广南 2016 核聚变与等离子体物理 36 42Google Scholar

    Wang W Z, Xiang L Y, Wu J H, Yang Z S, Ding F, Wang L, Duan Y M, Hu Z H, Mao H M, Luo G N 2016 Nuclear Fusion Plasma Phys. 36 42Google Scholar

    [13]

    Zhao L M, Shan J F, Liu F K, Jia H, Wang M, Liu L, Wang X J, Xu H D, the LHCD team 2010 Plasma Sci. Technol. 12 118Google Scholar

    [14]

    Xu H D, Wang X J, Liu F K, Zhang J, Huang Y Y, Han J F, Wu D J, Hu H C, Li B, Li M H, Yang Y, Feng J Q, Xu W Y, Tang Y Y, Wei W, Xu L Q, Liu Y, Zhao H L, Lohr J, Gorelov Y A, Anderson J P, Ma W D, Wu Z G, Wang J, Zhang L Y, Guo F, Sun H Z, Yan X S, East Team 2016 Plasma Sci. Technol. 18 442Google Scholar

    [15]

    Zhao Y P, Zhang X J, Man Y Z, Yuan S, Xue D Y, Deng X, Wang L, Ju S Q, Cheng Y, Qin C M, Chen G, Lin Y, Li J G, Wan B N, Song Y T, Braun F, Kumazawa R, Wukitch S 2014 Fusion Eng. Des. 89 2642Google Scholar

    [16]

    刘成岳, 陈美霞, 吴斌 2017 核聚变与等离子体物理 37 313Google Scholar

    Liu C Y, Chen M X, Wu B 2017 Nuclear Fusion Plasma Phys. 37 313Google Scholar

    [17]

    Zhang L, Morita S, Xu Z, Wu Z W, Zhang P F, Wu C R, Gao W, Ohishi T, Goto M, Shen J S, Chen Y J, Liu X, Wang Y M, Dong C F, Zhang H M, Huang X L, Gong X Z, Hu L Q, Chen J L, Zhang X D, Wan B N, Li J G 2015 Rev. Sci. Instrum 86 123509Google Scholar

    [18]

    Xu Z, Zhang L, Cheng Y X, Morita S, Li L, Zhang W M, Zhang F L, Zhao Z H, Zhou T F, Wu Z W, Lin X D, Gao X, Ding X B, Yang Y, Liu H Q 2021 Nucl. Instrum. Methods Phys. Res. A 1010 165545Google Scholar

    [19]

    Zhang L, Morita S, Wu Z W, Xu Z, Yang X D, Cheng Y X, Zang Q, Liu H Q, Liu Y, Zhang H M, Ohishi T, Chen Y J, Xu L Q, Wu C R, Duan Y M, Gao W, Huang J, Gong X Z, Hu L Q 2019 Nucl. Instrum. Methods Phys. Res. A 916 169Google Scholar

    [20]

    Versloot T W, de Vries P C, Giroud C, Brix M, von Hellermann M G, Lomas P J, Moulton D, Mullane M O', Nunes I M, Salmi A, Tala T, Voitsekhovitch I, Zastrow K D, JET-EFDA Contributors 2011 Plasma. Phys. Control. Fusion 53 065017Google Scholar

    [21]

    Angioni C, Helander P 2014 Plasma. Phys. Control. Fusion 56 124001Google Scholar

    [22]

    Fülöp T, Helander P 1999 Phys. Plasmas 6 3066Google Scholar

    [23]

    Angioni C 2021 Plasma. Phys. Control. Fusion 63 073001Google Scholar

  • [1] 丁肖冠, 赵开君, 谢耀禹, 陈志鹏, 陈忠勇, 杨州军, 高丽, 丁永华, 温思宇, 胡莹欣. J-TEXT托卡马克锯齿振荡期间湍流传播和对称性破缺对边缘剪切流的影响. 物理学报, 2025, 74(4): 045201. doi: 10.7498/aps.74.20241364
    [2] 张启凡, 乐文成, 张羽昊, 葛忠昕, 邝志强, 萧声扬, 王璐. 钨杂质辐射对托卡马克等离子体大破裂快速热猝灭阶段热能损失过程的影响. 物理学报, 2024, 73(18): 185201. doi: 10.7498/aps.73.20240730
    [3] 龙婷, 柯锐, 吴婷, 高金明, 才来中, 王占辉, 许敏. HL-2A托卡马克偏滤器脱靶时边缘极向旋转和湍流动量输运. 物理学报, 2024, 73(8): 088901. doi: 10.7498/aps.73.20231749
    [4] 王福琼, 徐颖峰, 查学军, 钟方川. 托卡马克边界等离子体中钨杂质输运的多流体及动力学模拟. 物理学报, 2023, 72(21): 215213. doi: 10.7498/aps.72.20230991
    [5] 潘姗姗, 段艳敏, 徐立清, 晁燕, 钟国强, 孙有文, 盛回, 刘海庆, 储宇奇, 吕波, 金仡飞, 胡立群. EAST托卡马克上共振磁扰动对锯齿行为的影响. 物理学报, 2023, 72(13): 135203. doi: 10.7498/aps.72.20230347
    [6] 鱼在洋, 郑锦韬, 张洋, 汪之国, 孙辉, 熊志强, 罗晖. 核磁共振陀螺中EPR信号响应不对称性研究. 物理学报, 2022, 71(22): 220701. doi: 10.7498/aps.71.20220775
    [7] 张文敏, 张凌, 程云鑫, 王正汹, 胡爱兰, 段艳敏, 周天富, 刘海庆. EAST等离子体Mo V-Mo XVIII极紫外光谱的识别. 物理学报, 2022, 71(11): 115203. doi: 10.7498/aps.71.20212383
    [8] 沈勇, 董家齐, 徐红兵. 托卡马克离子温度梯度湍流输运同位素定标修正中杂质的影响. 物理学报, 2018, 67(19): 195203. doi: 10.7498/aps.67.20180703
    [9] 黄艳, 孙继忠, 桑超峰, 丁芳, 王德真. 边界局域模对EAST钨偏滤器靶板腐蚀程度的数值模拟研究. 物理学报, 2014, 63(3): 035204. doi: 10.7498/aps.63.035204
    [10] 李加宏, 胡建生, 王小明, 余耀伟, 吴金华, 陈跃, 王厚银. EAST超导托卡马克装置真空室壁处理的研究. 物理学报, 2012, 61(20): 205203. doi: 10.7498/aps.61.205203
    [11] 卢洪伟, 查学军, 胡立群, 林士耀, 周瑞杰, 罗家融, 钟方川. HT-7托卡马克slide-away放电充气对等离子体行为的影响. 物理学报, 2012, 61(7): 075202. doi: 10.7498/aps.61.075202
    [12] 欧靖, 杨锦宏. 偏滤器运行模式对托卡马克边缘区等离子体平行流的影响. 物理学报, 2012, 61(7): 075201. doi: 10.7498/aps.61.075201
    [13] 郑永真, 冯兴亚, 郑银甲, 郭干城, 徐德明, 邓中朝. 用激光吹气注入高Z杂质使HL-1M托卡马克放电安全终止的研究. 物理学报, 2005, 54(6): 2809-2813. doi: 10.7498/aps.54.2809
    [14] 徐 伟, 万宝年, 谢纪康. HT-6M托卡马克装置杂质输运. 物理学报, 2003, 52(8): 1970-1978. doi: 10.7498/aps.52.1970
    [15] 李齐良, 郑永真, 程发银, 邓小波, 邓冬生, 游佩林, 刘贵昂, 陈向东. 托卡马克删削层与偏滤器中等离子体输运的解析研究. 物理学报, 2001, 50(3): 507-511. doi: 10.7498/aps.50.507
    [16] 郑少白, A.J.Wootton, S.C.McCool, W.A.Craven. 非圆截面托卡马克等离子体边缘磁场结构的快速Mapping方法. 物理学报, 1995, 44(5): 715-725. doi: 10.7498/aps.44.715
    [17] 郑少白, 杨宣宗, W. P. WEST, D. M. THOMAS. 利用高能锂束激光荧光法测量托卡马克中的角向磁场. 物理学报, 1990, 39(4): 531-540. doi: 10.7498/aps.39.531
    [18] 张左阳, 霍裕平. 非圆截面托卡马克轴对称模的反馈稳定. 物理学报, 1986, 35(10): 1364-1368. doi: 10.7498/aps.35.1364
    [19] 陈启洲, 胡宁. 奇异粒子衰变的上下不对称问题. 物理学报, 1964, 20(4): 374-377. doi: 10.7498/aps.20.374
    [20] 胡宁. Λ和∑粒子衰变的上下不对称性. 物理学报, 1961, 17(7): 315-320. doi: 10.7498/aps.17.315
计量
  • 文章访问数:  2287
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-06
  • 修回日期:  2023-10-07
  • 上网日期:  2023-10-27
  • 刊出日期:  2024-02-05

/

返回文章
返回