搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

EAST等离子体Mo V-Mo XVIII极紫外光谱的识别

张文敏 张凌 程云鑫 王正汹 胡爱兰 段艳敏 周天富 刘海庆

引用本文:
Citation:

EAST等离子体Mo V-Mo XVIII极紫外光谱的识别

张文敏, 张凌, 程云鑫, 王正汹, 胡爱兰, 段艳敏, 周天富, 刘海庆

Line identification of extreme ultraviolet spectra of Mo V to Mo XVIII in EAST tokamak

Zhang Wen-Min, Zhang Ling, Cheng Yun-Xin, Wang Zheng-Xiong, Hu Ai-Lan, Duan Yan-Min, Zhou Tian-Fu, Liu Hai-Qing
PDF
HTML
导出引用
  • 磁约束聚变等离子体中高Z杂质的存在给等离子体的约束状态带来不同程度的影响. EAST装置第一壁是钼瓦, 不可避免地, 等离子体与壁相互作用会使钼进入等离子体成为高Z杂质. 本文利用EAST托卡马克装置快速极紫外杂质谱仪系统实现了对5—500 Å (1 Å = 0.1 nm)波段范围内杂质线光谱进行同时监测. 结合EAST等离子体低、中Z杂质的特征谱线对波长进行原位标定, 基于NIST数据库和已有实验数据进行对比, 并利用归一化谱线强度随时间演化行为, 对较低电子温度(Te0 = 1.5 keV)等离子体中5—485 Å波段范围内由瞬态钼杂质溅射产生的钼光谱进行了系统性识别. 在15—30 Å和65—95 Å波段范围观测到分别由电离态Mo19+-Mo24+(Mo XX-Mo XXV), Mo16+-Mo29+(Mo XVII-Mo XXX)组成的未分辨跃迁系. 而且在EAST上观测并识别出27—60 Å和120—485 Å波段范围内低价钼离子(Mo4+-Mo17+)的多条谱线(Mo V-Mo XVIII). 这些谱线包含多条强度较强且独立的禁戒线和共振线, 例如Mo XII(329.414 Å, 336.639 Å, 381.125 Å), Mo XIII (340.909 Å, 352.994 Å), Mo XIV(373.647 Å, 423.576 Å), Mo XV(50.448 Å, 57.927 Å, 58.832 Å); 还观测到27—32 Å波段范围内6条新的钼谱线, 即(27.21 ± 0.01) Å, (27.37 ± 0.01) Å, (28.99 ± 0.01) Å, (30.81 ± 0.01) Å, (31.54 ± 0.01) Å, (31.83 ± 0.01) Å, 并推断这6条谱线可能是Mo XV-Mo XVIII谱线. 同时确定了12条用于杂质输运物理研究的谱线. 这些谱线的识别不仅丰富了钼原子数据库, 还为EAST托卡马克开展高Z杂质行为以及输运物理的研究提供了坚实基础.
    The presence of high-Z impurities in magnetically confined fusion devices has different influences on the confinement property of the plasma due to the high cooling rate of high-Z impurities. The first wall of EAST is equipped with molybdenum tiles, molybdenum particles sputtered from inevitable plasma-wall interaction enter into the plasma and become high-Z impurity. In this paper, four fast-time-response extreme ultraviolet (EUV) spectrometers, a system which is upgraded in the EAST 2021 campaign, are used to monitor the line emission from impurity ions in the 5–500 Å wavelength range simultaneously. The in-situ wavelength calibration is carried out accurately using several well-known emission lines of low- and medium-Z impurity ions. The observed spectral lines are carefully identified based on the National Institute of Standards Technology (NIST) database, previously published experimental data and the time evolution of the normalized line intensity of emission lines from impurity ions. At the lower electron temperature (Te0 = 1.5 keV), the EUV spectra emitted from molybdenum ions in the range of 5–485 Å are systematically identified in EAST discharges accompanied with spontaneous sputtering events. As a result, two unresolved transition arrays of molybdenum spectra composed of Mo19+-Mo24+ (Mo XX-Mo XXV) and Mo16+-Mo29+ (Mo XVII-Mo XXX) are observed in the ranges of 15–30 Å and 65–95 Å. In addition, several spectral lines of lower molybdenum ions of Mo4+-Mo17+ (Mo V-Mo XVIII) in the ranges of 27–60 Å and 120–485 Å are observed and identified on EAST for the first time, including a few strong and isolated forbidden and resonant lines, e.g. Mo XII at 329.414 Å, 336.639 Å and 381.125 Å, Mo XIII at 340.909 Å and 352.994 Å, Mo XIV at 373.647 Å and 423.576 Å, Mo XV at 50.448 Å, 57.927 Å and 58.832 Å. Six spectral lines are newly observed in the range of 27–32 Å, i.e. (27.21 ± 0.01) Å, (27.37 ± 0.01) Å, (28.99 ± 0.01) Å, (30.81 ± 0.01) Å, (31.54 ± 0.01) Å and (31.83 ± 0.01) Å, which may be Mo XV-Mo XVIII spectral lines. As a result, twelve strong and isolated spectral lines are chosen in routine observation for impurity transport physical study. The identification of these spectral lines not only enriches the molybdenum atom database, but also provides a solid experimental data base for magnetically confined devices to study the behavior and transport in core and edge plasmas of high-Z impurity.
      通信作者: 张凌, zhangling@ipp.ac.cn ; 王正汹, zxwang@dlut.edu.cn
    • 基金项目: 国家磁约束核聚变能发展研究专项(批准号: 2022YFE03180400)、国家自然科学基金(批准号: 11925501)和国家重点研发计划(批准号: 2018YFE0311100, 2019YFE030403)资助的课题
      Corresponding author: Zhang Ling, zhangling@ipp.ac.cn ; Wang Zheng-Xiong, zxwang@dlut.edu.cn
    • Funds: Project supported by the National MCF Energy R&D Program, China (Grant No. 2022YFE03180400 ), the National Natural Science Foundation of China (Grant No. 11925501), and the National Key Research and Development Program of China (Grant Nos. 2018YFE0311100, 2019YFE030403)
    [1]

    Wan B N, Gong X Z, Liang Y, et al. 2022 Nucl. Fusion 62 042010Google Scholar

    [2]

    Gao X, Zeng L, Wu M Q, Zhang T, Yang Y, Ming T F, Zhu X, Wang Y M, Liu H Q, Zang Q, Li G Q, Huang J, Gong X Z, Li Y Y, Li J G, Wan Y X 2020 Nucl. Fusion 60 102001Google Scholar

    [3]

    Zhang L, Morita S, Xu Z, et al. 2017 Nucl. Mater. Energy 12 774Google Scholar

    [4]

    李加宏, 胡建生, 王小明, 余耀伟, 吴金华, 陈跃, 王厚银 2012 物理学报 61 205203Google Scholar

    Li J H, Hu J S, Wang X M, Yu Y W, Wu J H, Chen Y, Wang H Y 2012 Acta Phys. Sin. 61 205203Google Scholar

    [5]

    Gong X Z, Garofalo A M, Huang J, et al. 2019 Nucl. Fusion 59 086030Google Scholar

    [6]

    张凌, 吴振伟, 高伟, 黄娟, 陈颖杰, 高伟, 胡立群 2013 原子与分子物理学报 30 779Google Scholar

    Zhang L, Wu Z W, Gao W, Huang J, Chen Y J, Gao W, Hu L Q 2013 J. At. Mol. Phys. 30 779Google Scholar

    [7]

    Asmussen K, Fournier K B, Laming J M, Neu R, Seely J F, Dux R, Engelhardt W, Fuchs J C 1998 Nucl. Fusion 38 967Google Scholar

    [8]

    Chowdhuri M B, Morita S, Goto M, Nishimura H, Nagai K, Fujioka S 2007 Rev. Sci. Instrum. 78 023501Google Scholar

    [9]

    Huang X L, Morita S, Oishi T, Goto M, Dong C F 2014 Rev. Sci. Instrum. 85 043511Google Scholar

    [10]

    Beiersdorfer P, Magee E W, Träbert E, Chen H, Lepson J K, Gu M F, Schmidt M 2004 Rev. Sci. Instrum. 75 3723Google Scholar

    [11]

    Lepson J K, Beiersdorfer P, Clementson J, Gu M F, Bitter M, Roquemore L, Kaita R, Cox P G, Safronova A S 2010 J. Phys. B:At. Mol. Opt. Phys. 43 144018Google Scholar

    [12]

    Cui Z Y, Morita S, Zhou H Y, et al. 2013 Nucl. Fusion 53 093001Google Scholar

    [13]

    Zhang L, Morita S, Xu Z, et al. 2015 Rev. Sci. Instrum. 86 123509Google Scholar

    [14]

    Xu Z, Zhang L, Cheng Y X, et al. 2021 Nucl. Instrum. Methods Phys. Res. A 1010 165545Google Scholar

    [15]

    Li L, Zhang L, Xu Z, et al. 2021 Plasma Sci. Technol. 23 075102Google Scholar

    [16]

    Chowdhuri M B, Morita S, Goto M, Nishimura H, Nagai K, Fujioka S 2007 Plasma Fusion Res. 2 S1060Google Scholar

    [17]

    Liu Y, Morita S, Oishi T, Goto M, Huang X L 2018 Plasma Fusion Res. 13 3402020Google Scholar

    [18]

    Schwob J L, Klapisch M, Schweitzer N, Finkenthal M, Breton C, Michelis C D, Mattioli M 1977 Phys. Lett. A 62 85Google Scholar

    [19]

    Jupén C, Denne-Hinnov B, Martinson I, Curtis L J 2003 Phys. Scr. 68 230Google Scholar

    [20]

    杨友磊, 胡叶民, 项农 2017 物理学报 24 245202Google Scholar

    Yang Y L, Hu Y M, Xiang N 2017 Acta Phys. Sin. 24 245202Google Scholar

    [21]

    洪斌斌, 陈少永, 唐昌建, 张新军, 胡有俊 2012 物理学报 61 115207Google Scholar

    Hong B B, Chen S Y, Tang C J, Zhang X J, Hu Y J 2012 Acta Phys. Sin. 61 115207Google Scholar

    [22]

    Wan B N, Li J G, Guo H Y, Liang Y F, Xu G S, Wang L, Gong X Z 2015 Nucl. Fusion 55 104015Google Scholar

    [23]

    姚黎明, 张凌, 许棕, 杨秀达, 吴承瑞, 张睿瑞, 杨飞, 吴振伟, 姚建铭, 龚先祖, 胡立群 2019 光谱学与光谱分析 39 2645Google Scholar

    Yao L M, Zhang L, Xu Z, Yang X D, Wu C R, Zhang R R, Yang F, Wu Z W, Yao J M, Gong X Z, Hu L Q 2019 Spectrosc. Spect. Anal. 39 2645Google Scholar

    [24]

    杨秀达, 张凌, 许棕, 张鹏飞, 陈颖杰, 黄娟, 吴振伟, 龚先祖, 胡立群 2018 光谱学与光谱分析 38 1262Google Scholar

    Yang X D, Zhang L, Xu Z, Zhang P F, Chen Y J, Huang J, Wu Z W, Gong X Z, Hu L Q 2018 Spectrosc. Spect. Anal. 38 1262Google Scholar

    [25]

    Kramida A, Ralchenko Y, Reader J 2021 NIST Atomic Spectra Database 78 https://dx.doi.org/10.18434/T4 W30 F

    [26]

    Duan Y M, Hu L Q, Mao S T, Xu P, Chen K Y, Lin S Y, Zhong G Q, Zhang J Z, Zhang L, Wang L 2011 Plasma Sci. Technol. 13 546Google Scholar

    [27]

    Klapisch M, Schwob J L, Finkenthal M, Fraenkel B S, Egert S, Bar-Shalom A, Breton C, DeMichelis C, Mattioli M 1978 Phys. Rev. Lett. 41 403Google Scholar

    [28]

    Zhang L, Morita S, Wu Z W, et al. 2019 Nucl. Instrum. Methods Phys. Res. A 916 169Google Scholar

    [29]

    程云鑫, 张凌, 吴振伟, 许棕, 杨秀达, 黎缧 2020 核聚变与等离子体物理 40 262Google Scholar

    Cheng Y X, Zhang L, Wu Z W, Xu Z, Yang X D, Li L 2020 Nucl. Fusion Plasma Phys. 40 262Google Scholar

  • 图 1  极紫外光谱仪的光路设计 (a) 短波段快速EUV谱仪; (b) 长波段快速EUV谱仪

    Fig. 1.  Optical layout of fast-time-response EUV spectrometer: (a) EUV_Short; (b) EUV_Long_a, EUV_Long_b, EUV_Long_c.

    图 2  EAST极向截面、最外磁面(红色线)以及4套快速极紫外光谱仪观测弦

    Fig. 2.  EAST poloidal cross section and the last closed magnetic surface (red line), and lines of sight of four fast-time-response EUV spectrometers on EAST.

    图 3  发生钼杂质溅射的典型波形图 (a) 等离子体电流Ip; (b) 低杂波、离子回旋和中性束加热功率(PLHW, PICRF, PNBI); (c) 芯部弦平均电子密度ne; (d) 归一化的Mo V 258.069 Å和Mo XXIV 70.726 Å线辐射强度(IMo V, IMo XXIV); (e) 归一化的边界辐射和芯部辐射强度(Edge IAXUV, Core IAXUV)

    Fig. 3.  Typical waveform of discharge with molybdenum impurity sputtering: (a) plasma current, Ip; (b) heating power of low hybrid wave, PLHW, ion cyclotron range of frequency heating, PICRF, and neutral beam injection, PNBI; (c) central line-averaged electron density, ne; (d) normalized intensities of Mo V at 258.069 Å, IMo V, and Mo XXIV at 70.726 Å, IMo XXIV; (e) normalized radiation intensities observed by fast AXUV system along an edge and central chord, Edge IAXUV, and Core IAXUV, respectively.

    图 4  EAST #101700放电中钼杂质爆发前后辐射分布 (a) 9.1—9.9 s的时间演化; (b) t = 9.172 s, 9.480 s, 9.497 s 3个时刻

    Fig. 4.  Radiation profiles before and after the molybdenum impurity burst in EAST #101700 discharge: (a) Time evolutions during 9.1–9.9 s; (b) at three timings of t = 9.172 s, 9.480 s and 9.497 s.

    图 5  EAST #101700放电钼杂质爆发前325 ms(灰色线, t = 9.172 s)和爆发期间(蓝色线, t = 9.497 s)观测5—485 Å波段范围的EUV光谱 (a) 5—45 Å; (b) 45—165 Å; (c) 165—285 Å; (d) 285—485 Å

    Fig. 5.  EUV spectra observed 325 ms before (grey lines, t = 9.172 s) and during (blue lines, t = 9.497 s) the molybdenum burst at the wavelength ranges of 5–485 Å in EAST discharge #101700: (a) 5–45 Å; (b) 45–165 Å; (c) 165–285 Å; (d) 285–485 Å.

    图 6  EAST #101700放电中四条钼离子归一化谱线强度随时间的演化 (a) Mo VII 235.694 Å; (b) Mo XV 57.928 Å, 2nd Mo XV 115.856 Å; (c) Mo XXIV 70.726 Å

    Fig. 6.  Time evolutions of the four molybdenum ions normalized line emission intensities in EAST #101700 discharge: (a) Mo VII at 235.694 Å; (b) Mo XV at 57.928 Å and 2nd Mo XV at 115.856 Å; (c) Mo XXIV at 70.726 Å.

    表 1  在EUV波段识别的钼谱线

    Table 1.  Identified molybdenum lines in EUV range.

    谱线离子电离能/eV波长/Å跃迁能级
    实验值参考值
    Mo VMo4+54.42258.09 ± 0.03258.0694p54d3 3 → 4p64d2 1D2
    324.98 ± 0.02324.9794p64d5f 34 → 4p64d2 3F4
    327.13 ± 0.01327.1674p54d3 3 → 4p64d2 3P2
    Mo VIMo5+68.83227.75 ± 0.04227.8014p5(2P°)4d(3F)5s 25/2→4p64d 2D5/2
    229.20 ± 0.04229.2624p66f 25/2 →4p64d 2D3/2
    Mo VIIMo6+125.64151.85 ± 0.04151.7474s24p5(23/2)5d 2[1/2] °1 → 4s24p6 1S0
    235.66 ± 0.05235.6944s24p5(23/2)5f 2[3/2]1 → 4s24p5(21/2)4d 2[3/2]°2
    Mo VIIIMo7+143.6133.18 ± 0.03133.1684s24p4(3P)5d 2P3/2→4s24p5 23/2
    134.34 ± 0.03134.3624s24p4(3P)5d 4F5/2→4s24p5 23/2
    136.83 ± 0.03136.7824s24p4(3P)5d 2D3/2→4s24p5 23/2
    Mo IXMo8+164.12132.03 ± 0.03132.0774s24p3(2P°)5d 31→4s24p4 1S0
    158.53 ± 0.03158.6414s24p3(21/2)5s (1/2, 1/2)°1→4s24p4 3P2
    176.67 ± 0.04176.6824s24p3(23/2)5s (3/2, 1/2)°2→4s24p4 1D2
    231.90 ± 0.05231.9914s24p3(2D°)4d 13→4s24p4 1D2
    237.76 ± 0.05237.8434s24p3(2D°)4d 12→4s24p4 1D2
    Mo XMo9+186.3152.54 ± 0.04152.6834s24p2(3P)5s 4P3/2 →4s24p3 43/2
    157.65 ± 0.04157.6244s24p2(3P)5s 2P3/2 →4s24p3 25/2
    159.07 ± 0.04159.0494s24p2(3P)5s 4P5/2 →4s24p3 25/2
    159.42 ± 0.04159.2194s24p2(3P)5s 4P3/2 →4s24p3 23/2
    231.07 ± 0.04231.1104s24p2(1D)4d 2F7/2 →4s24p3 25/2
    239.03 ± 0.06239.0174s24p2(1S)4d 2D5/2 →4s24p3 23/2
    243.05 ± 0.06243.0714s24p2(1D)4d 2D3/2→4s24p3 25/2
    Mo XIMo10+209.3146.65 ± 0.04146.6414s24p (21/2)5s (1/2, 1/2)°1→4s24p2 3P2
    322.12 ± 0.04322.1584s4p3 11 → 4s24p2 1D2
    Mo XIIMo11+230.28131.37 ± 0.03131.3944s25s 2S1/2→4s24p 21/2
    250.09 ± 0.06250.1124s24d 2D5/2→4s24p 23/2
    329.53 ± 0.01329.4144s4p2 2P3/2→4s24p 23/2
    336.51 ± 0.01336.6394s4p2 2P1/2→4s24p 23/2
    381.13 ± 0.06381.1254s4p2 2D3/2→4s24p 21/2
    Mo XIIIMo12+279.153.56 ± 0.0253.5513d94s24p 31→3d104s2 1S0
    54.12 ± 0.0254.1013d94s24p 11→3d104s2 1S0
    340.88 ± 0.01340.9093d104s4p 11→3d104s2 1S0
    352.87 ± 0.03352.9943d104p2 3P1→3d104s4p 30
    Mo XIVMo13+302.651.98 ± 0.0252.0003d9(2D)4p2(3P) 2P1/2→3d104p 23/2
    52.77 ± 0.0252.7533d9(2D)4s4p (3P°) 23/2→3d104s 2S1/2
    121.68 ± 0.02121.6473d105s 2S1/2→3d104p 23/2
    241.78 ± 0.06241.6093d104d 2D3/2→3d104p 21/2
    373.55 ± 0.05373.6473d104p 23/2→3d104s 2S1/2
    423.57 ± 0.07423.5763d104p 21/2→3d104s 2S1/2
    Mo XVMo14+54429.48 ± 0.0129.4583d95f 11→3d10 1S0
    29.81 ± 0.0129.7743d95f 31→3d10 1S0
    35.39 ± 0.0135.3683d94f 11→3d10 1S0
    50.43 ± 0.0250.4483d9(2D5/2)4p (5/2, 3/2)°1→3d10 1S0
    58.04 ± 0.0457.9273d9(2D3/2)4s (3/2, 1/2) 2→3d10 1S0
    58.86 ± 0.0458.8323d9(2D5/2)4s (5/2, 1/2) 2→3d10 1S0
    347.47 ± 0.05347.3393d9(2D5/2)4p (5/2, 3/2)°3→3d9(2D5/2)4s (5/2, 1/2)3
    365.77 ± 0.04365.9243d9(2D5/2)4p (5/2, 3/2)4→3d9(2D5/2)4s (5/2, 1/2)3
    Mo XVIMo15+59132.92 ± 0.0532.9163p63d8(1G4)4f 2[1]°3/2→3p63d9 2D5/2
    34.03 ± 0.0133.9923p63d8(3F2)4f 2[1]°3/2→3p63d9 2D3/2
    54.46 ± 0.0354.3483p63d8(3F4)4s (4, 1/2) 9/2→3p63d9 2D5/2
    Mo XVIIIMo17+70238.81 ± 0.0138.700a3d64p→3d7
    a 数据来源于文献[18], 其他数据来源于NIST数据库[25], 粗体表示可用于杂质诊断的谱线.
    下载: 导出CSV
  • [1]

    Wan B N, Gong X Z, Liang Y, et al. 2022 Nucl. Fusion 62 042010Google Scholar

    [2]

    Gao X, Zeng L, Wu M Q, Zhang T, Yang Y, Ming T F, Zhu X, Wang Y M, Liu H Q, Zang Q, Li G Q, Huang J, Gong X Z, Li Y Y, Li J G, Wan Y X 2020 Nucl. Fusion 60 102001Google Scholar

    [3]

    Zhang L, Morita S, Xu Z, et al. 2017 Nucl. Mater. Energy 12 774Google Scholar

    [4]

    李加宏, 胡建生, 王小明, 余耀伟, 吴金华, 陈跃, 王厚银 2012 物理学报 61 205203Google Scholar

    Li J H, Hu J S, Wang X M, Yu Y W, Wu J H, Chen Y, Wang H Y 2012 Acta Phys. Sin. 61 205203Google Scholar

    [5]

    Gong X Z, Garofalo A M, Huang J, et al. 2019 Nucl. Fusion 59 086030Google Scholar

    [6]

    张凌, 吴振伟, 高伟, 黄娟, 陈颖杰, 高伟, 胡立群 2013 原子与分子物理学报 30 779Google Scholar

    Zhang L, Wu Z W, Gao W, Huang J, Chen Y J, Gao W, Hu L Q 2013 J. At. Mol. Phys. 30 779Google Scholar

    [7]

    Asmussen K, Fournier K B, Laming J M, Neu R, Seely J F, Dux R, Engelhardt W, Fuchs J C 1998 Nucl. Fusion 38 967Google Scholar

    [8]

    Chowdhuri M B, Morita S, Goto M, Nishimura H, Nagai K, Fujioka S 2007 Rev. Sci. Instrum. 78 023501Google Scholar

    [9]

    Huang X L, Morita S, Oishi T, Goto M, Dong C F 2014 Rev. Sci. Instrum. 85 043511Google Scholar

    [10]

    Beiersdorfer P, Magee E W, Träbert E, Chen H, Lepson J K, Gu M F, Schmidt M 2004 Rev. Sci. Instrum. 75 3723Google Scholar

    [11]

    Lepson J K, Beiersdorfer P, Clementson J, Gu M F, Bitter M, Roquemore L, Kaita R, Cox P G, Safronova A S 2010 J. Phys. B:At. Mol. Opt. Phys. 43 144018Google Scholar

    [12]

    Cui Z Y, Morita S, Zhou H Y, et al. 2013 Nucl. Fusion 53 093001Google Scholar

    [13]

    Zhang L, Morita S, Xu Z, et al. 2015 Rev. Sci. Instrum. 86 123509Google Scholar

    [14]

    Xu Z, Zhang L, Cheng Y X, et al. 2021 Nucl. Instrum. Methods Phys. Res. A 1010 165545Google Scholar

    [15]

    Li L, Zhang L, Xu Z, et al. 2021 Plasma Sci. Technol. 23 075102Google Scholar

    [16]

    Chowdhuri M B, Morita S, Goto M, Nishimura H, Nagai K, Fujioka S 2007 Plasma Fusion Res. 2 S1060Google Scholar

    [17]

    Liu Y, Morita S, Oishi T, Goto M, Huang X L 2018 Plasma Fusion Res. 13 3402020Google Scholar

    [18]

    Schwob J L, Klapisch M, Schweitzer N, Finkenthal M, Breton C, Michelis C D, Mattioli M 1977 Phys. Lett. A 62 85Google Scholar

    [19]

    Jupén C, Denne-Hinnov B, Martinson I, Curtis L J 2003 Phys. Scr. 68 230Google Scholar

    [20]

    杨友磊, 胡叶民, 项农 2017 物理学报 24 245202Google Scholar

    Yang Y L, Hu Y M, Xiang N 2017 Acta Phys. Sin. 24 245202Google Scholar

    [21]

    洪斌斌, 陈少永, 唐昌建, 张新军, 胡有俊 2012 物理学报 61 115207Google Scholar

    Hong B B, Chen S Y, Tang C J, Zhang X J, Hu Y J 2012 Acta Phys. Sin. 61 115207Google Scholar

    [22]

    Wan B N, Li J G, Guo H Y, Liang Y F, Xu G S, Wang L, Gong X Z 2015 Nucl. Fusion 55 104015Google Scholar

    [23]

    姚黎明, 张凌, 许棕, 杨秀达, 吴承瑞, 张睿瑞, 杨飞, 吴振伟, 姚建铭, 龚先祖, 胡立群 2019 光谱学与光谱分析 39 2645Google Scholar

    Yao L M, Zhang L, Xu Z, Yang X D, Wu C R, Zhang R R, Yang F, Wu Z W, Yao J M, Gong X Z, Hu L Q 2019 Spectrosc. Spect. Anal. 39 2645Google Scholar

    [24]

    杨秀达, 张凌, 许棕, 张鹏飞, 陈颖杰, 黄娟, 吴振伟, 龚先祖, 胡立群 2018 光谱学与光谱分析 38 1262Google Scholar

    Yang X D, Zhang L, Xu Z, Zhang P F, Chen Y J, Huang J, Wu Z W, Gong X Z, Hu L Q 2018 Spectrosc. Spect. Anal. 38 1262Google Scholar

    [25]

    Kramida A, Ralchenko Y, Reader J 2021 NIST Atomic Spectra Database 78 https://dx.doi.org/10.18434/T4 W30 F

    [26]

    Duan Y M, Hu L Q, Mao S T, Xu P, Chen K Y, Lin S Y, Zhong G Q, Zhang J Z, Zhang L, Wang L 2011 Plasma Sci. Technol. 13 546Google Scholar

    [27]

    Klapisch M, Schwob J L, Finkenthal M, Fraenkel B S, Egert S, Bar-Shalom A, Breton C, DeMichelis C, Mattioli M 1978 Phys. Rev. Lett. 41 403Google Scholar

    [28]

    Zhang L, Morita S, Wu Z W, et al. 2019 Nucl. Instrum. Methods Phys. Res. A 916 169Google Scholar

    [29]

    程云鑫, 张凌, 吴振伟, 许棕, 杨秀达, 黎缧 2020 核聚变与等离子体物理 40 262Google Scholar

    Cheng Y X, Zhang L, Wu Z W, Xu Z, Yang X D, Li L 2020 Nucl. Fusion Plasma Phys. 40 262Google Scholar

  • [1] 敏琦, 王国栋, 何朝伟, 何思奇, 卢海东, 刘兴邦, 武艳红, 苏茂根, 董晨钟. 激光锡等离子体的状态参数分布和极紫外波段辐射的模拟研究. 物理学报, 2025, 74(3): 033201. doi: 10.7498/aps.74.20241321
    [2] 龙婷, 柯锐, 吴婷, 高金明, 才来中, 王占辉, 许敏. HL-2A托卡马克偏滤器脱靶时边缘极向旋转和湍流动量输运. 物理学报, 2024, 73(8): 088901. doi: 10.7498/aps.73.20231749
    [3] 张启凡, 乐文成, 张羽昊, 葛忠昕, 邝志强, 萧声扬, 王璐. 钨杂质辐射对托卡马克等离子体大破裂快速热猝灭阶段热能损失过程的影响. 物理学报, 2024, 73(18): 185201. doi: 10.7498/aps.73.20240730
    [4] 赵伟宽, 张凌, 程云鑫, 周呈熙, 张文敏, 段艳敏, 胡爱兰, 王守信, 张丰玲, 李政伟, 曹一鸣, 刘海庆. EAST托卡马克钨杂质上下不对称性分布的实验研究. 物理学报, 2024, 73(3): 035201. doi: 10.7498/aps.73.20231448
    [5] 潘姗姗, 段艳敏, 徐立清, 晁燕, 钟国强, 孙有文, 盛回, 刘海庆, 储宇奇, 吕波, 金仡飞, 胡立群. EAST托卡马克上共振磁扰动对锯齿行为的影响. 物理学报, 2023, 72(13): 135203. doi: 10.7498/aps.72.20230347
    [6] 王福琼, 徐颖峰, 查学军, 钟方川. 托卡马克边界等离子体中钨杂质输运的多流体及动力学模拟. 物理学报, 2023, 72(21): 215213. doi: 10.7498/aps.72.20230991
    [7] 沈勇, 董家齐, 徐红兵. 托卡马克离子温度梯度湍流输运同位素定标修正中杂质的影响. 物理学报, 2018, 67(19): 195203. doi: 10.7498/aps.67.20180703
    [8] 谢会乔, 谭熠, 刘阳青, 王文浩, 高喆. 中国联合球形托卡马克氦放电等离子体的碰撞辐射模型及其在谱线比法诊断的应用. 物理学报, 2014, 63(12): 125203. doi: 10.7498/aps.63.125203
    [9] 李加宏, 胡建生, 王小明, 余耀伟, 吴金华, 陈跃, 王厚银. EAST超导托卡马克装置真空室壁处理的研究. 物理学报, 2012, 61(20): 205203. doi: 10.7498/aps.61.205203
    [10] 钟武律, 段旭如, 余德良, 韩晓玉, 杨立梅. HL-2A托卡马克中性束辐射光谱的数值模拟. 物理学报, 2010, 59(5): 3336-3343. doi: 10.7498/aps.59.3336
    [11] 郑永真, 冯兴亚, 郑银甲, 郭干城, 徐德明, 邓中朝. 用激光吹气注入高Z杂质使HL-1M托卡马克放电安全终止的研究. 物理学报, 2005, 54(6): 2809-2813. doi: 10.7498/aps.54.2809
    [12] 查学军, 朱思铮, 虞清泉. 托卡马克极向场线圈的优化方法. 物理学报, 2003, 52(2): 428-433. doi: 10.7498/aps.52.428
    [13] 徐 伟, 万宝年, 谢纪康. HT-6M托卡马克装置杂质输运. 物理学报, 2003, 52(8): 1970-1978. doi: 10.7498/aps.52.1970
    [14] 王文浩, 许宇鸿, 俞昌旋, 闻一之, 凌必利, 宋梅, 万宝年. HT-7超导托卡马克边缘涨落谱特征及湍流输运研究. 物理学报, 2001, 50(10): 1956-1963. doi: 10.7498/aps.50.1956
    [15] 刘才根, 钱尚介, 万华明. 电子回旋波驱动的托卡马克芯部等离子体极向旋转. 物理学报, 1998, 47(9): 1515-1519. doi: 10.7498/aps.47.1515
    [16] 赵庆勋, 李赞良, 郑少白. CT-6B托卡马克等离子体角向转动的光谱测量. 物理学报, 1997, 46(1): 94-100. doi: 10.7498/aps.46.94
    [17] 刘胜侠. HT-6M托卡马克离子回旋共振频率加热电荷交换能谱的分析. 物理学报, 1995, 44(1): 152-156. doi: 10.7498/aps.44.152
    [18] 李赞良, 王文书, 李文莱, 刘翔, 李孝昌. CT-6B托卡马克装置上电流上升阶段电子温度的光谱测量. 物理学报, 1989, 38(4): 637-644. doi: 10.7498/aps.38.637
    [19] 王文书, 李赞良, 黄矛. CT-6B托卡马克等离子体的真空紫外光谱. 物理学报, 1987, 36(6): 712-716. doi: 10.7498/aps.36.712
    [20] 王永昌, E. JANNITTI, G. TONDELLO. 对等离子体中谱线的斯塔克增宽的真空紫外光谱观测. 物理学报, 1985, 34(8): 1049-1055. doi: 10.7498/aps.34.1049
计量
  • 文章访问数:  4570
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-24
  • 修回日期:  2022-01-29
  • 上网日期:  2022-03-04
  • 刊出日期:  2022-06-05

/

返回文章
返回