搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高超声速模型尾迹电子密度二维分布反演方法

吴明兴 田得阳 唐璞 田径 何子远 马平

引用本文:
Citation:

高超声速模型尾迹电子密度二维分布反演方法

吴明兴, 田得阳, 唐璞, 田径, 何子远, 马平

Inversion method of two-dimensional distribution of electron density in hypersonic model wake

Wu Ming-Xing, Tian De-Yang, Tang Pu, Tian Jing, He Zi-Yuan, Ma Ping
PDF
HTML
导出引用
  • 弹道靶利用二级轻气炮将模型加速到高超声速状态, 模型在靶室内超高速飞行时形成等离子体尾迹. 为实现高超声速模型尾迹电子密度径向二维分布诊断, 利用七通道微波干涉仪测量系统获得了高超声速模型尾迹截面不同位置处平均电子密度. 该系统采用一发七收的方式, 实现平面波照射等离子体及平面波接收, 天线波束可完全覆盖尾迹径向范围. 多通道微波干涉仪数据处理过程常将等离子体视为分层介质, 考虑到分层界面上折射效应的影响, 本研究利用射线追踪方式建立电磁传播模型, 结合测量数据建立目标函数, 通过遗传算法优化来反演高超声速模型尾迹电子密度径向二维分布. 该数据处理方法的电子密度反演结果与相同来流条件下的数值模拟结果对比吻合较好, 初步验证了该方法的有效性. 分析了分层模型对电子密度分布特性的影响, 结果表明利用七层模型对尾迹建模效果最佳, 且适用于不同厚度尾迹, 最大化利用接收通道数, 确保了计算精度. 利用该方法实现弹道靶高超声速球模型尾迹电子密度二维分布诊断, 并给出了给定实验状态下模型尾迹电子密度二维分布的一些规律.
    The ballistic target uses a two-stage light gas gun to launch the model into a hypersonic state, and the model forms a plasma wake when flying at a hypersonic speed in the target chamber. In order to obtain the radial two-dimensional distribution of transient plasma electron density in the wake of hypervelocity model, a seven-channel Ka-band microwave interferometer measuring system is developed. In the transceiver system, a transmitting antenna achieves the plane wave irradiation plasma, and a seven-port array antenna is used to receive plane waves which are passing through the plasma: the antenna beam can completely cover the radial range of the wake. The shortest response time of measuring system is 1 s, and electron density measurement range of the interferometer measuring system is 1011–1013/cm3 . The plasma is often treated as layered medium in data processing of multichannel microwave interferometer. Taking into consideration the effect of refraction on the stratified interface in this work, the ray tracing (RT) method is used to establish the electromagnetic propagation model. Combined with the measurement data to construct the objective function, the genetic algorithm (GA) is used to invert the radial two-dimensional distribution of the electron density under different test conditions. The result shows good agreement with the numerical simulation under the same test state, which proves the the data processing method reliable. Then, the influence of the layered model on the calculation result is analyzed, which shows that the seven-layer model is suitable for the wake modeling under given experimental conditions, and thus maximizing the number of receiving channels and ensuring the accuracy. The RT method is used for the first time to achieve the two-dimensional distribution of electron density in the wake of hypervelocity projectile, and some rules of two-dimensional electron density distribution of the hypersonic model under given experimental conditions are realized.
      通信作者: 马平, hbmaping@263.net
    • 基金项目: 国家重点研发计划(批准号: SQ2019YFA040012)和国防科技基础加强计划重点基础研究项目(批准号: 2020-JCJQ-ZD-072)资助的课题.
      Corresponding author: Ma Ping, hbmaping@263.net
    • Funds: Project supported by the National Key R&D Program of China (Grant No. SQ2019YFA040012) and the Key Basic Research Foundation of the National Defense Science and Technology Basic Strengthening Program of China (Grant No. 2020-JCJQ-ZD-072).
    [1]

    于哲峰, 孙良奎, 马平, 杨益兼, 张志成, 黄洁 2017 红外 38 039Google Scholar

    Yu Z F, Sun L K, Ma P, Yang Y J, Zhang Z C, Huang J 2017 Infrared 38 039Google Scholar

    [2]

    池凌飞, 林揆训, 姚若河, 林璇英, 余楚迎, 余云鹏 2001 物理学报 50 1313Google Scholar

    Chi L F, Lin K X, Yao R H, Lin X Y, Yu C Y, Yu Y P 2001 Acta Phys. Sin. 50 1313Google Scholar

    [3]

    吴莹, 白顺波, 王俊彦, 陈建平, 倪晓武 2007 光电子技术 27 49Google Scholar

    Wu Y, Bai S B, Wang J Y, Chen J P, Ni X W 2007 Optoelectron. Technol. 27 49Google Scholar

    [4]

    吴蓉, 李燕, 朱顺官, 冯红艳, 张琳, 王俊德 2008 光谱学与光谱分析 28 731Google Scholar

    Wu R, Li Y, Zhu S G, Feng H Y, Zhang L, Wang J D 2008 Spectrosc. Spectral Anal. 28 731Google Scholar

    [5]

    王彦飞, 朱悉铭, 张明志, 孟圣峰, 贾军伟, 柴昊, 王旸, 宁中喜 2021 物理学报 70 095211Google Scholar

    Wang Y F, Zhu X M, Zhang M Z, Meng S F, Jia J W, Chai H, Wang Y, Ning Z X 2021 Acta Phys. Sin. 70 095211Google Scholar

    [6]

    武晋泽, 唐晋娥, 董有尔, 张国峰, 王彦华 2012 物理学报 61 195208Google Scholar

    Wu J Z, Tang J E, Dong Y E, Zhang G F, Wang Y H 2012 Acta Phys. Sin 61 195208Google Scholar

    [7]

    Rishabhkumar M N, Nandurbarkar A B, Buch J U 2017 International Conference on Inventive Computing and Informatics Coimbatore, India, November 23–24, 2017 pp267–272

    [8]

    Jobes F C, Mansfield D K 1992 Rev. Sci. Instrum. 63 5154Google Scholar

    [9]

    Ohler G S, Gilchrist E B, Gallimore D A 1995 IEEE Trans. Plasma Sci. 23 428Google Scholar

    [10]

    Ghaderi M, Moradi G, Mousavi P 2018 IEEE Trans. Plasma Sci. 47 451Google Scholar

    [11]

    Atrey P, Pujara D, Mukherjee S, Rakesh L 2019 IEEE Trans. Plasma. Sci. 47 1316Google Scholar

    [12]

    Yoshikawa M, Matsumoto T, Shima Y, Negishi S, Imai T 2008 Rev. Sci. Instrum. 79 2281Google Scholar

    [13]

    Eiichirou K, Lin Y H, Atsushi M, Yasushi N, Cheng C Z 2014 Rev. Sci. Instrum. 85 023507Google Scholar

    [14]

    易臻 2006 制造业自动化 28 091Google Scholar

    Yi Z 2006 Manuf. Autom. 28 091Google Scholar

    [15]

    马平, 石安华, 杨益兼, 于哲峰, 梁世昌, 黄洁 2017 物理学报 66 102401Google Scholar

    Ma P, Shi A H, Yang Y J, Yu Z F, Liang S C, Huang J 2017 Acta Phys. Sin. 66 102401Google Scholar

    [16]

    马昊军, 王国林, 罗杰, 刘丽萍, 潘德贤, 张军, 刑英丽, 唐飞 2018 物理学报 67 025201Google Scholar

    Ma H J, Wang G L, Luo J, Liu L P, Pan D X, Zhang J, Xing Y L, Tang F 2018 Acta Phys. Sin. 67 025201Google Scholar

    [17]

    肖礼康, 唐璞, 陈波, 万莉莉, 何子远, 马平 2017 兵器装备工程学报 38 44Google Scholar

    Xiao L K, Tang P, Chen B, Wang L L, He Z Y, Ma P 2017 J. Ordnance Equip. Eng. 38 44Google Scholar

    [18]

    Shi P W, Shi Z B, Chen W, Zhong W L, Yang Z C, Jiang M, Zhang B Y, Li Y G, Yu L M, Liu Z T, Ding X T 2016 Plasma Sci. Technol. 18 708Google Scholar

    [19]

    叶民友, 郭文康, 范叔平 1991 核聚变与等离子体物理 11 185Google Scholar

    Ye M Y, Guo W K, Fan S P 1991 Nucl. Fusion Plasma Phys. 11 185Google Scholar

    [20]

    何璐, 董晓龙, 张祥坤 2016 空间科学学报 36 358Google Scholar

    He L, Dong X L, Zhang X K 2016 Chin. J. Space Sci. 36 358Google Scholar

    [21]

    江少恩, 刘忠礼, 唐道源, 郑志坚 1999 光学学报 19 660Google Scholar

    Jiang S E, Liu Z L, Tang D Y, Zheng Z J 1999 Acta Opt. Sin. 19 660Google Scholar

  • 图 1  模型尾迹示意图

    Fig. 1.  The schematic diagram of wake.

    图 2  $P = 40000{\text{ }}{\rm{Pa}}, V = 5.83{\text{ km}}/{\text{s}}$钢球模型尾迹电子密度分布 (a) 电子密度流场; (b) 不同轴向位置电子密度径向二维分布

    Fig. 2.  The wake of ball electron density distribution ($P = 40000{\text{ }}{\rm{Pa}}, V = 5.83{\text{ km}}/{\text{s}}$): (a) The flow field of electron density; (b) radial two-dimensional distribution of electron density at different axial positions.

    图 3  Ka波段七通道微波干涉仪测量系统工作原理

    Fig. 3.  Operating principle of seven channels Ka band microwave interferometer measurement system working in Ka band.

    图 4  接收天线端口分布

    Fig. 4.  The port distribution of the receiving antenna.

    图 5  射线追踪示意图 (a) 传播路径; (b) 分界面折射

    Fig. 5.  The schematic diagram of ray tracing: (a) Tracking path; (b) refraction at the interface.

    图 6  径向不同位置电子密度随轴向距离的分布 (a) ϕ12 mm 钢球, P = 40000 Pa, V = 5.83 km/s; (b) ϕ12 mm 钢球, P = 20000 Pa, V = 5.80 km/s; (c) ϕ15 mm Al2O3球, P = 40000 Pa, V = 4.72 km/s

    Fig. 6.  The electron density at different radial positions distribution with axial distance: (a) Steel ball of ϕ12 mm, P = 40000 Pa, V = 5.83 km/s; (b) steel ball of ϕ12 mm, P = 20000 Pa, V = 5.80 km/s; (c) Al2O3 ball of ϕ15 mm, P = 40000 Pa, V = 4.72 km/s.

    图 7  x = 10$ 0\phi $电子密度径向二维分布 (a) ϕ12 mm 钢球, P = 40000 Pa, V = 5.83 km/s; (b) ϕ12 mm 钢球, P = 20000 Pa, V = 5.80 km/s; (c) ϕ15 mm Al2O3球, P = 40000 Pa, V = 4.72 km/s

    Fig. 7.  The radial two-dimensional distribution of plasma electron density (x = 100$ \phi $): (a) ϕ12 mm 钢球, P = 40000 Pa, V = 5.83 km/s; (b) ϕ12 mm 钢球, P = 20000 Pa, V = 5.80 km/s; (c) ϕ15 mm Al2O3球, P = 40000 Pa, V = 4.72 km/s.

    图 8  x = 50$ \phi $电子密度径向二维分布 (a) ϕ12 mm 钢球, P = 40000 Pa, V = 5.83 km/s; (b) ϕ12 mm 钢球, P = 20000 Pa, V = 5.80 km/s; (c) ϕ15 mm Al2O3球, P = 40000 Pa, V = 4.72 km/s

    Fig. 8.  The radial two-dimensional distribution of plasma electron density (x = 50$ \phi $): (a) ϕ12 mm 钢球, P = 40000 Pa, V = 5.83 km/s; (b) ϕ12 mm 钢球, P = 20000 Pa, V = 5.80 km/s; (c) ϕ15 mm Al2O3球, P 40000 Pa, V = 4.72 km/s.

    图 9  x = 10$ \phi $电子密度径向二维分布 (a) ϕ12 mm 钢球, P = 40000 Pa, V = 5.83 km/s; (b) ϕ12 mm 钢球, P = 20000 Pa, V = 5.80 km/s; (c) ϕ15 mm Al2O3球, P = 40000 Pa, V = 4.72 km/s

    Fig. 9.  The radial two-dimensional distribution of plasma electron density (x = 10$ \phi $): (a) ϕ12 mm 钢球, P = 40000 Pa, V = 5.83 km/s; (b) ϕ12 mm 钢球, P = 20000 Pa, V = 5.80 km/s; (c) ϕ15 mm Al2O3球, P = 40000 Pa, V = 4.72 km/s.

    图 10  不同分层数计算结果对比图 (a) x = 50$ \phi $; (b) x = 10$ \phi $

    Fig. 10.  Comparison diagram of results of different stratification numbers: (a) x = 50$ \phi $; (b) x = 10$ \phi $.

  • [1]

    于哲峰, 孙良奎, 马平, 杨益兼, 张志成, 黄洁 2017 红外 38 039Google Scholar

    Yu Z F, Sun L K, Ma P, Yang Y J, Zhang Z C, Huang J 2017 Infrared 38 039Google Scholar

    [2]

    池凌飞, 林揆训, 姚若河, 林璇英, 余楚迎, 余云鹏 2001 物理学报 50 1313Google Scholar

    Chi L F, Lin K X, Yao R H, Lin X Y, Yu C Y, Yu Y P 2001 Acta Phys. Sin. 50 1313Google Scholar

    [3]

    吴莹, 白顺波, 王俊彦, 陈建平, 倪晓武 2007 光电子技术 27 49Google Scholar

    Wu Y, Bai S B, Wang J Y, Chen J P, Ni X W 2007 Optoelectron. Technol. 27 49Google Scholar

    [4]

    吴蓉, 李燕, 朱顺官, 冯红艳, 张琳, 王俊德 2008 光谱学与光谱分析 28 731Google Scholar

    Wu R, Li Y, Zhu S G, Feng H Y, Zhang L, Wang J D 2008 Spectrosc. Spectral Anal. 28 731Google Scholar

    [5]

    王彦飞, 朱悉铭, 张明志, 孟圣峰, 贾军伟, 柴昊, 王旸, 宁中喜 2021 物理学报 70 095211Google Scholar

    Wang Y F, Zhu X M, Zhang M Z, Meng S F, Jia J W, Chai H, Wang Y, Ning Z X 2021 Acta Phys. Sin. 70 095211Google Scholar

    [6]

    武晋泽, 唐晋娥, 董有尔, 张国峰, 王彦华 2012 物理学报 61 195208Google Scholar

    Wu J Z, Tang J E, Dong Y E, Zhang G F, Wang Y H 2012 Acta Phys. Sin 61 195208Google Scholar

    [7]

    Rishabhkumar M N, Nandurbarkar A B, Buch J U 2017 International Conference on Inventive Computing and Informatics Coimbatore, India, November 23–24, 2017 pp267–272

    [8]

    Jobes F C, Mansfield D K 1992 Rev. Sci. Instrum. 63 5154Google Scholar

    [9]

    Ohler G S, Gilchrist E B, Gallimore D A 1995 IEEE Trans. Plasma Sci. 23 428Google Scholar

    [10]

    Ghaderi M, Moradi G, Mousavi P 2018 IEEE Trans. Plasma Sci. 47 451Google Scholar

    [11]

    Atrey P, Pujara D, Mukherjee S, Rakesh L 2019 IEEE Trans. Plasma. Sci. 47 1316Google Scholar

    [12]

    Yoshikawa M, Matsumoto T, Shima Y, Negishi S, Imai T 2008 Rev. Sci. Instrum. 79 2281Google Scholar

    [13]

    Eiichirou K, Lin Y H, Atsushi M, Yasushi N, Cheng C Z 2014 Rev. Sci. Instrum. 85 023507Google Scholar

    [14]

    易臻 2006 制造业自动化 28 091Google Scholar

    Yi Z 2006 Manuf. Autom. 28 091Google Scholar

    [15]

    马平, 石安华, 杨益兼, 于哲峰, 梁世昌, 黄洁 2017 物理学报 66 102401Google Scholar

    Ma P, Shi A H, Yang Y J, Yu Z F, Liang S C, Huang J 2017 Acta Phys. Sin. 66 102401Google Scholar

    [16]

    马昊军, 王国林, 罗杰, 刘丽萍, 潘德贤, 张军, 刑英丽, 唐飞 2018 物理学报 67 025201Google Scholar

    Ma H J, Wang G L, Luo J, Liu L P, Pan D X, Zhang J, Xing Y L, Tang F 2018 Acta Phys. Sin. 67 025201Google Scholar

    [17]

    肖礼康, 唐璞, 陈波, 万莉莉, 何子远, 马平 2017 兵器装备工程学报 38 44Google Scholar

    Xiao L K, Tang P, Chen B, Wang L L, He Z Y, Ma P 2017 J. Ordnance Equip. Eng. 38 44Google Scholar

    [18]

    Shi P W, Shi Z B, Chen W, Zhong W L, Yang Z C, Jiang M, Zhang B Y, Li Y G, Yu L M, Liu Z T, Ding X T 2016 Plasma Sci. Technol. 18 708Google Scholar

    [19]

    叶民友, 郭文康, 范叔平 1991 核聚变与等离子体物理 11 185Google Scholar

    Ye M Y, Guo W K, Fan S P 1991 Nucl. Fusion Plasma Phys. 11 185Google Scholar

    [20]

    何璐, 董晓龙, 张祥坤 2016 空间科学学报 36 358Google Scholar

    He L, Dong X L, Zhang X K 2016 Chin. J. Space Sci. 36 358Google Scholar

    [21]

    江少恩, 刘忠礼, 唐道源, 郑志坚 1999 光学学报 19 660Google Scholar

    Jiang S E, Liu Z L, Tang D Y, Zheng Z J 1999 Acta Opt. Sin. 19 660Google Scholar

  • [1] 张震, 易仕和, 刘小林, 陈世康, 张臻. 高超声速条件下凸曲率壁面混合层流动演化研究. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20240128
    [2] 马平, 韩一平, 张宁, 田得阳, 石安华, 宋强. 高超声速类HTV2模型全目标电磁散射特性实验研究. 物理学报, 2022, 71(8): 084101. doi: 10.7498/aps.71.20211901
    [3] 刘勇, 涂国华, 向星皓, 李晓虎, 郭启龙, 万兵兵. 横向矩形微槽抑制高超声速第二模态扰动波的参数化研究. 物理学报, 2022, 71(19): 194701. doi: 10.7498/aps.71.20220851
    [4] 吴明兴, 田得阳, 唐璞, 田径, 何子远, 马平. 高超声速模型尾迹电子密度二维分布反演方法研究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212345
    [5] 郭广明, 朱林, 邢博阳. 超声速混合层涡结构内部流体的密度分布特性. 物理学报, 2020, 69(14): 144701. doi: 10.7498/aps.69.20200255
    [6] 丁明松, 江涛, 董维中, 高铁锁, 刘庆宗, 傅杨奥骁. 热化学模型对高超声速磁流体控制数值模拟影响分析. 物理学报, 2019, 68(17): 174702. doi: 10.7498/aps.68.20190378
    [7] 徐平, 杨伟, 张旭琳, 罗统政, 黄燕燕. 集成化导光板下表面微棱镜二维分布设计. 物理学报, 2019, 68(3): 038502. doi: 10.7498/aps.68.20181684
    [8] 李志辉, 彭傲平, 方方, 李四新, 张顺玉. 跨流域高超声速绕流环境Boltzmann模型方程统一算法研究. 物理学报, 2015, 64(22): 224703. doi: 10.7498/aps.64.224703
    [9] 王小虎, 易仕和, 付佳, 陆小革, 何霖. 二维高超声速后台阶表面传热特性实验研究. 物理学报, 2015, 64(5): 054706. doi: 10.7498/aps.64.054706
    [10] 刘进, 司福祺, 周海金, 赵敏杰, 窦科, 王煜, 刘文清. 机载成像差分吸收光谱技术测量区域NO2二维分布研究. 物理学报, 2015, 64(3): 034217. doi: 10.7498/aps.64.034217
    [11] 孙健, 刘伟强. 高超声速飞行器前缘疏导式热防护结构的实验研究. 物理学报, 2014, 63(9): 094401. doi: 10.7498/aps.63.094401
    [12] 刘伟, 郭立新, 孟肖, 郑帆. 沙丘粗糙面的二次极化电磁散射. 物理学报, 2013, 62(14): 144213. doi: 10.7498/aps.62.144213
    [13] 聂涛, 刘伟强. 高超声速飞行器前缘流固耦合计算方法研究. 物理学报, 2012, 61(18): 184401. doi: 10.7498/aps.61.184401
    [14] 汪枫, 赵正予, 常珊珊, 倪彬彬, 顾旭东. 低纬电离层人工调制所激发的ELF波射线追踪. 物理学报, 2012, 61(19): 199401. doi: 10.7498/aps.61.199401
    [15] 孟立民, 滕爱萍, 李英骏, 程涛, 张杰. 基于自相似模型的二维X射线激光等离子体流体力学. 物理学报, 2009, 58(8): 5436-5442. doi: 10.7498/aps.58.5436
    [16] 胡 昕, 江少恩, 崔延莉, 黄翼翔, 丁永坤, 刘忠礼, 易荣清, 李朝光, 张景和, 张华全. 一种时间分辨三通道软X射线光谱仪. 物理学报, 2007, 56(3): 1447-1451. doi: 10.7498/aps.56.1447
    [17] 邹和成, 乔 峰, 吴良才, 黄信凡, 李 鑫, 韩培高, 马忠元, 李 伟, 陈坤基. 激光干涉结晶技术制备二维有序分布纳米硅阵列. 物理学报, 2005, 54(8): 3646-3650. doi: 10.7498/aps.54.3646
    [18] 江少恩, 孙可煦, 郑志坚, 丁永坤, 杨家敏, 缪文勇, 崔延莉, 陈久森, 于燕宁. 神光Ⅱ装置x射线辐射在低密度CH泡沫中的超声速传播实验研究. 物理学报, 2004, 53(10): 3413-3418. doi: 10.7498/aps.53.3413
    [19] 周义昌, 余超凡. 一维线性链的亚声速和超声速孤立子. 物理学报, 1992, 41(12): 2016-2023. doi: 10.7498/aps.41.2016
    [20] 屈少华, 姚凯伦, 郁伯铭. 二维次近邻渗流模型. 物理学报, 1991, 40(2): 169-174. doi: 10.7498/aps.40.169
计量
  • 文章访问数:  2381
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-20
  • 修回日期:  2022-03-02
  • 上网日期:  2022-05-26
  • 刊出日期:  2022-06-05

/

返回文章
返回