搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高能带电粒子束对陡峭密度梯度区照相的散射效应解析模型

李亮亮 王晓方

引用本文:
Citation:

高能带电粒子束对陡峭密度梯度区照相的散射效应解析模型

李亮亮, 王晓方

Analytical model for scattering effect of energetic charged-particle beam in radiography of steep density gradient region

Li Liang-Liang, Wang Xiao-Fang
PDF
HTML
导出引用
  • 超短超强激光与物质相互作用产生的高能带电粒子束在放射照相中具有重要应用. 当几十到几百MeV动能的高能带电粒子束穿过薄膜靶时, 能量损失可忽略, 主要发生小角散射. 由于该散射效应, 高能带电粒子束对具有横向陡峭密度梯度区的靶照相, 透射束在探测面上的通量密度分布中会出现靶密度梯度区散射产生的调制现象, 有可能反过来诊断出陡峭密度梯度区信息. 目前主要采用蒙特卡罗方法对带电粒子束发生散射和产生调制现象进行理论分析, 不仅计算时间长, 计算的参数范围也有限. 本文发展了一个解析模型, 用来处理带电粒子束在靶中传输的散射效应以及在探测面上产生的调制现象, 能够快速给出结果, 而且与蒙特卡罗方法数值计算的结果符合很好. 使用本文解析模型, 对带电粒子束照相密度梯度靶产生散射调制现象的特征进行了分析. 提出了一个与照相条件有关的无量纲参量, 其取值范围决定了散射调制信号特征以及诊断陡峭密度梯度区的可能性.
    Energetic charged-particle beams produced from ultrashort ultra-intense laser plasma interactions play a vital role in charged-particle radiography. When such an energetic beam penetrates through a foil target, its energy loss is negligible, and the main physics process is small-angle scattering. Owing to this scattering effect, charged-particle radiography of a target with a transversely distributed steep density gradient region will produce a modulation structure in the fluence distribution on the detection plane, which could be used to diagnose the steep density gradient region. In the past, the theoretical work on the scattering effect and the resulting modulation structure was done with Monte-Carlo simulations, which cost a lot of computing time and the studied parameter range was limited. In the present work, an analytical model is developed to deal with the scattering effect inside the target and the modulation structure on the detection plane in radiography, which can quickly present the results that coincide with Monte-Carlo simulations very well. By using this analytical model, the characteristics of modulation structures are analyzed. A dimensionless characteristic parameter related to radiography conditions is put forward, and its range determines different modulation structures and also the probability of diagnosing a steep density gradient region with a width $\lesssim $ 2 μm.
      通信作者: 王晓方, wang1@ustc.edu.cn
      Corresponding author: Wang Xiao-Fang, wang1@ustc.edu.cn
    [1]

    Zohuri B 2017 Inertial Confinement Fusion Driven Thermonuclear Energy (Cham: Springer International Publishing AG)

    [2]

    Lindl J 1995 Phys. Plasmas 2 3933Google Scholar

    [3]

    Chen B, Yang Z, Wei M, Pu Y, Hu X, Chen T, Liu S, Yan J, Huang T, Jiang S, Ding Y 2014 Phys. Plasmas. 21 122705Google Scholar

    [4]

    陆中伟, 王晓方 2019 物理学报 68 035202Google Scholar

    Lu Z W, Wang X F 2019 Acta Phys. Sin. 68 035202Google Scholar

    [5]

    Marshall F J, Ivancic S T, Mileham C, Nilson P M, Ruby J J, Stoeckl C, Scheiner B S, Schmitt M J 2021 Rev. Sci. Instrum. 92 033701Google Scholar

    [6]

    Higginson A, Gray R J, King M, et al. 2018 Nat. Commun. 9 724Google Scholar

    [7]

    Gonsalves A J, Nakamura K, Daniels J, et al. 2019 Phys. Rev. Lett. 122 084801Google Scholar

    [8]

    Li C K, Séguin F H, Frenje J A, et al. 2006 Phys. Rev. Lett. 97 135003Google Scholar

    [9]

    Du B, Wang X F 2018 AIP Adv. 8 125328Google Scholar

    [10]

    Mackinnon A J, Patel P K, Borghesi M, et al. 2006 Phys. Rev. Lett. 97 045001Google Scholar

    [11]

    Cobble J A, Johnson R P, Cowan T E, Renard-Le Galloudec N, Allen M 2002 J. Appl. Phys. 92 1775Google Scholar

    [12]

    温树槐, 丁永坤 2012 激光惯性约束聚变诊断学 (北京: 国防工业出版社)

    Wen S H, Ding Y K 2012 Laser Inertial Confinement Fusion Diagnostics (Beijing: National Defense Industry Press) (in Chinese)

    [13]

    滕建, 洪伟, 赵宗清, 巫顺超, 秦孝尊, 何颖玲, 谷渝秋, 丁永坤 2009 物理学报 58 1635Google Scholar

    Teng J, Hong W, Zhao Z Q, Wu S C, Qin X Z, He Y L, Gu Y Q, Ding Y K 2009 Acta Phys. Sin. 58 1635Google Scholar

    [14]

    肖渊, 王晓方, 滕建, 陈晓虎, 陈媛, 洪伟 2012 物理学报 61 234102Google Scholar

    Xiao Y, Wang X F, Teng J, Chen X H, Chen Y, Hong W 2012 Acta Phys. Sin. 61 234102Google Scholar

    [15]

    陈媛, 王晓方, 邵光超 2015 物理学报 64 154101Google Scholar

    Chen Y, Wang X F, Shao G C 2015 Acta Phys. Sin. 64 154101Google Scholar

    [16]

    Bethe H A 1953 Phys. Rev. 89 1256Google Scholar

    [17]

    Highland V L 1975 Nucl. Instrum. Methods 129 497Google Scholar

    [18]

    Shao G, Wang X 2016 Phys. Plasmas 23 092703Google Scholar

    [19]

    Zhang Y, Wang X 2020 Plasma Phys. Control. Fusion 62 095023Google Scholar

    [20]

    Wu X J, Wang X F, Chen X H 2016 Chin. Phys. Lett. 33 065201Google Scholar

    [21]

    Ferrari A, Sala P R, Fassò A, Ranft J, Siegen U 2005 FLUKA: A Multi-particle Transport Code No. SLAC-R-773 Stanford Linear Accelerator Center (SLAC)

    [22]

    Jackson J D 2005 Classical Electrodynamics (3rd Ed.) (Beijing: Higher Education Press)

    [23]

    汪晓莲, 李澄, 邵明, 陈宏芳 2009 粒子探测技术 (合肥: 中国科学技术大学出版社)

    Wang X L, Li C, Shao M, Chen H F 2009 The Technique of Particle Detection (Hefei: USTC Press) (in Chinese)

  • 图 1  准直带电粒子束被平面靶散射后的角分布示意图

    Fig. 1.  The schematic diagram of the angular distribution of a collimated charged particle beam scattered by a plane target.

    图 2  带电粒子束照相一维密度梯度分布靶 (a) 照相示意图; (b) 梯度靶的密度分布示意图

    Fig. 2.  A charged particle beam radiographs a planar target with a one-dimensional density gradient: (a) The schematic diagram of radiography; (b) the schematic of density profile around the density gradient region.

    图 3  沿x方向的电子通量密度分布 (a)单能电子束; (b)不同能散电子束

    Fig. 3.  The electron fluence distribution along x direction for an incident electron beam: (a) Mono energy; (b) different energy spread.

    图 4  沿x方向的电子通量密度分布 (a) d = 0 μm; (b) d = 1 μm

    Fig. 4.  The electron fluence distribution along x direction: (a) d = 0 μm; (b) d = 1 μm.

    图 5  电子束对多层球靶照相的示意图

    Fig. 5.  Schematic diagram for an electron beam radiographing a spherically multilayer capsule.

    图 6  Fluka模拟结果 (a) 探测面上电子图像; (b) y = 0附近沿x方向的通量密度分布

    Fig. 6.  Results from Fluka simulation: (a) Electron radiograph on the detection plane; (b) fluence distribution along the x direction around y = 0.

    图 7  解析模型的结果 (a) 散射角宽度的径向分布; (b) y = 0处通量密度分布和Fluka模拟结果

    Fig. 7.  Results from the analytical model: (a) Distribution of the scattered angle in the radial direction; (b) the fluence distributions from the analytical model and Fluka simulation, respectively.

    图 8  不同照相参数条件下典型调制信号形状

    Fig. 8.  Representative modulation structures under different radiography conditions.

    图 9  调制信号特征量和ω随照相参数的变化 (a) 点源发散束情况下改变梯度区宽度; (b) 改变点源与靶的间距; (c) 点源发散束和平行束条件下改变靶与探测面距离; (d) 无量纲的调制信号特征量随ω的变化关系

    Fig. 9.  Dependence of the characteristic quantities and ω on the change of: (a) Density gradient width by using a point-source beam for radiography; (b) point source-to-target distance; (c) target-to-detection plane distance by using a parallel beam or a point-source beam for radiography, respectively; (d) the relation of the dimensionless characteristic quantities to ω.

  • [1]

    Zohuri B 2017 Inertial Confinement Fusion Driven Thermonuclear Energy (Cham: Springer International Publishing AG)

    [2]

    Lindl J 1995 Phys. Plasmas 2 3933Google Scholar

    [3]

    Chen B, Yang Z, Wei M, Pu Y, Hu X, Chen T, Liu S, Yan J, Huang T, Jiang S, Ding Y 2014 Phys. Plasmas. 21 122705Google Scholar

    [4]

    陆中伟, 王晓方 2019 物理学报 68 035202Google Scholar

    Lu Z W, Wang X F 2019 Acta Phys. Sin. 68 035202Google Scholar

    [5]

    Marshall F J, Ivancic S T, Mileham C, Nilson P M, Ruby J J, Stoeckl C, Scheiner B S, Schmitt M J 2021 Rev. Sci. Instrum. 92 033701Google Scholar

    [6]

    Higginson A, Gray R J, King M, et al. 2018 Nat. Commun. 9 724Google Scholar

    [7]

    Gonsalves A J, Nakamura K, Daniels J, et al. 2019 Phys. Rev. Lett. 122 084801Google Scholar

    [8]

    Li C K, Séguin F H, Frenje J A, et al. 2006 Phys. Rev. Lett. 97 135003Google Scholar

    [9]

    Du B, Wang X F 2018 AIP Adv. 8 125328Google Scholar

    [10]

    Mackinnon A J, Patel P K, Borghesi M, et al. 2006 Phys. Rev. Lett. 97 045001Google Scholar

    [11]

    Cobble J A, Johnson R P, Cowan T E, Renard-Le Galloudec N, Allen M 2002 J. Appl. Phys. 92 1775Google Scholar

    [12]

    温树槐, 丁永坤 2012 激光惯性约束聚变诊断学 (北京: 国防工业出版社)

    Wen S H, Ding Y K 2012 Laser Inertial Confinement Fusion Diagnostics (Beijing: National Defense Industry Press) (in Chinese)

    [13]

    滕建, 洪伟, 赵宗清, 巫顺超, 秦孝尊, 何颖玲, 谷渝秋, 丁永坤 2009 物理学报 58 1635Google Scholar

    Teng J, Hong W, Zhao Z Q, Wu S C, Qin X Z, He Y L, Gu Y Q, Ding Y K 2009 Acta Phys. Sin. 58 1635Google Scholar

    [14]

    肖渊, 王晓方, 滕建, 陈晓虎, 陈媛, 洪伟 2012 物理学报 61 234102Google Scholar

    Xiao Y, Wang X F, Teng J, Chen X H, Chen Y, Hong W 2012 Acta Phys. Sin. 61 234102Google Scholar

    [15]

    陈媛, 王晓方, 邵光超 2015 物理学报 64 154101Google Scholar

    Chen Y, Wang X F, Shao G C 2015 Acta Phys. Sin. 64 154101Google Scholar

    [16]

    Bethe H A 1953 Phys. Rev. 89 1256Google Scholar

    [17]

    Highland V L 1975 Nucl. Instrum. Methods 129 497Google Scholar

    [18]

    Shao G, Wang X 2016 Phys. Plasmas 23 092703Google Scholar

    [19]

    Zhang Y, Wang X 2020 Plasma Phys. Control. Fusion 62 095023Google Scholar

    [20]

    Wu X J, Wang X F, Chen X H 2016 Chin. Phys. Lett. 33 065201Google Scholar

    [21]

    Ferrari A, Sala P R, Fassò A, Ranft J, Siegen U 2005 FLUKA: A Multi-particle Transport Code No. SLAC-R-773 Stanford Linear Accelerator Center (SLAC)

    [22]

    Jackson J D 2005 Classical Electrodynamics (3rd Ed.) (Beijing: Higher Education Press)

    [23]

    汪晓莲, 李澄, 邵明, 陈宏芳 2009 粒子探测技术 (合肥: 中国科学技术大学出版社)

    Wang X L, Li C, Shao M, Chen H F 2009 The Technique of Particle Detection (Hefei: USTC Press) (in Chinese)

  • [1] 相萌, 何飘, 王天宇, 袁琳, 邓凯, 刘飞, 邵晓鹏. 计算偏振彩色傅里叶叠层成像: 散射光场偏振特性的复用技术. 物理学报, 2024, 73(12): 124202. doi: 10.7498/aps.73.20240268
    [2] 李顺, 李正军, 屈檀, 李海英, 吴振森. 双零阶贝塞尔波束的传播及对单轴各向异性球的散射特性. 物理学报, 2022, 71(18): 180301. doi: 10.7498/aps.71.20220491
    [3] 李亮亮, 王晓方. 高能带电粒子束对陡峭密度梯度区照相的散射效应解析模型及散射调制现象的特征. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212269
    [4] 程晨, 史泽林, 崔生成, 徐青山. 改进的单次散射相函数解析表达式. 物理学报, 2017, 66(18): 180201. doi: 10.7498/aps.66.180201
    [5] 付成花. 微纳粒子光学散射分析. 物理学报, 2017, 66(9): 097301. doi: 10.7498/aps.66.097301
    [6] 马艳, 林书玉, 鲜晓军. 次Bjerknes力作用下气泡的体积振动和散射声场. 物理学报, 2016, 65(1): 014301. doi: 10.7498/aps.65.014301
    [7] 庄佳衍, 陈钱, 何伟基, 冒添逸. 基于压缩感知的动态散射成像. 物理学报, 2016, 65(4): 040501. doi: 10.7498/aps.65.040501
    [8] 白敏, 宣荣喜, 宋建军, 张鹤鸣, 胡辉勇, 舒斌. 压应变Ge/(001)Si1-xGex空穴散射与迁移率模型. 物理学报, 2015, 64(3): 038501. doi: 10.7498/aps.64.038501
    [9] 殷澄, 许田, 陈秉岩, 韩庆邦. 金属粒子阵列共振的偏振特性. 物理学报, 2015, 64(16): 164202. doi: 10.7498/aps.64.164202
    [10] 陈媛, 王晓方, 邵光超. 电子束放射照相的特性与参数优化. 物理学报, 2015, 64(15): 154101. doi: 10.7498/aps.64.154101
    [11] 张会云, 刘蒙, 尹贻恒, 吴志心, 申端龙, 张玉萍. 基于格林函数法研究金属线栅在太赫兹波段的散射特性. 物理学报, 2013, 62(19): 194207. doi: 10.7498/aps.62.194207
    [12] 王海华, 孙贤明. 两种按比例混合颗粒系的多次散射模拟. 物理学报, 2012, 61(15): 154204. doi: 10.7498/aps.61.154204
    [13] 赵太飞, 柯熙政. Monte Carlo方法模拟非直视紫外光散射覆盖范围. 物理学报, 2012, 61(11): 114208. doi: 10.7498/aps.61.114208
    [14] 肖渊, 王晓方, 滕建, 陈晓虎, 陈媛, 洪伟. 激光加速电子束放射照相的模拟研究. 物理学报, 2012, 61(23): 234102. doi: 10.7498/aps.61.234102
    [15] 贺静波, 刘忠, 胡生亮. 基于海杂波散射特性的微弱信号检测方法. 物理学报, 2011, 60(11): 110208. doi: 10.7498/aps.60.110208
    [16] 刘文军, 毛宏燕, 付国庆, 曲士良. 散射介质中多重散射太赫兹脉冲的时域统计特性. 物理学报, 2010, 59(2): 913-917. doi: 10.7498/aps.59.913
    [17] 陈星, 夏云杰. 双模压缩真空态和纠缠相干态的一维势垒散射. 物理学报, 2010, 59(1): 80-86. doi: 10.7498/aps.59.80
    [18] 王清华, 张颖颖, 来建成, 李振华, 贺安之. Mie理论在生物组织散射特性分析中的应用. 物理学报, 2007, 56(2): 1203-1207. doi: 10.7498/aps.56.1203
    [19] 刘丽想, 杜国浩, 胡 雯, 骆玉宇, 谢红兰, 陈 敏, 肖体乔. 利用定量相衬成像消除X射线同轴轮廓成像中散射的影响. 物理学报, 2006, 55(12): 6387-6394. doi: 10.7498/aps.55.6387
    [20] 白 璐, 吴振森, 陈 辉, 郭立新. 高斯波束入射下串粒子的散射问题. 物理学报, 2005, 54(5): 2025-2029. doi: 10.7498/aps.54.2025
计量
  • 文章访问数:  2920
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-08
  • 修回日期:  2022-02-28
  • 上网日期:  2022-05-26
  • 刊出日期:  2022-06-05

/

返回文章
返回