搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

次Bjerknes力作用下气泡的体积振动和散射声场

马艳 林书玉 鲜晓军

引用本文:
Citation:

次Bjerknes力作用下气泡的体积振动和散射声场

马艳, 林书玉, 鲜晓军

Volume pulsation and scattering of bubbles under the second Bjerknes force

Ma Yan, Lin Shu-Yu, Xian Xiao-Jun
PDF
导出引用
  • 利用Lagrange方程得到了次Bjerknes力作用下气泡的体积振动方程, 并探讨了次Bjerknes力作用下不同参数对气泡体积振动振幅和振动初相位的影响, 研究了振动初相位差为和0的气泡对在液体中形成的散射声场特征. 结果表明: 次Bjerknes作用力下, 相邻气泡半径、气泡间距、多方指数均能影响气泡的体积振动振幅, 气泡对的均衡半径、气泡间距和驱动频率则对气泡振动初相位产生明显影响; 相距很近、相位相差为的两个气泡的散射声压与气泡体积振动振幅、气泡间距、驱动频率和振动初相位有关, 随声场距离成反比减小, 与声场位置有关, 其平均散射声功率是单个孤立气泡的1/6 (kd12)2; 半径相同、相距很近、相位相同的两个气泡的散射声压与气泡振动初相位、体积振动振幅、气泡间距、驱动频率有关, 随声场距离成反比减小, 其平均散射声功率是单个孤立气泡的4倍.
    The interaction of bubbles must be taken into consideration in the investigation of sound wave in the liquid containing gas bubbles, particularly in the case where the gas content is high. The force between two air bubbles due to the secondary sound fields radiated by the bubbles is called the secondary Bjerknes force, which makes the dynamics and scattering of bubbles different from a single bubble's. In order to investigate the influence of secondary Bjerknes force on bubbles' pulsation and scattering, we obtain the universal expression of bubbles' pulsation under the secondary Bjerknes force by Lagrange's equation. The influences on volume amplitude and initial phase of different parameter under the second Bjerknes force are discussed, and the scattering of bubbles with phase differences of and 0 is studied. The results show that the radius of neighbouring bubble, distance between two bubbles, polytropic coefficient and the phase can change the volume amplitude of pulsation under the secondary Bjerknes force. The mean radius of bubbles, distance and the frequency of sound have a significant effect on initial phase; the scattering of two bubbles of small distance and phase difference of is directional and decreases with distance r, which is related to the volume amplitude, initial phase and distance between two bubbles. The mean scattering power of bubble pairs of phase difference is 1/6(kd12)2 of single bubble's. The scattering of two bubbles with small distance and same phase also decreases with the distance r and relates to the volume amplitude, initial phase and distance between two bubbles. The mean scattering power of bubble pairs of same phase is 4 times as bigger as the mean scattering power of single bubble. It is expected that the mean radiuses, driving frequency and distance between bubbles can be used to change the scattering of bubbles.
      通信作者: 林书玉, sylin@snnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11174192, 11374200, 11474192)资助的课题.
      Corresponding author: Lin Shu-Yu, sylin@snnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174192, 11374200, 11474192).
    [1]

    Carstensen E L, Foldy L L 1947 J. Acoust. Soc. Am. 19 481

    [2]

    Devin C J R 1959 J. Acoust. Soc. Am. 31 1654

    [3]

    Himmelblau D M 1964 Chem. Rev. 64 527

    [4]

    Kapodistrias G, Dahl P H 2001 J. Acoust. Soc. Am. 110 1271

    [5]

    Kohanvosky A A 2004 Am. J. Phys. 72 258

    [6]

    Cai L W 2004 J. Acoust. Soc. Am. 115 986

    [7]

    Kapodistrias G, Dahl P H 2000 J. Acoust. Soc. Am. 107 3006

    [8]

    Farmer D M, Deane G B 2001 IEEE J. Oceanic Eng. 26 113

    [9]

    Flynn H G 1975 J. Acoust. Soc. Am. 57 1379

    [10]

    Qian Z W 1981 Acta Phys. Sin. 30 442 (in Chinese) [钱祖文 1981 物理学报 30 442]

    [11]

    Wang Y, Lin S Y 2014 Acta Phys. Sin. 63 034301 (in Chinese) [王勇, 林书玉 2014 物理学报 63 034301]

    [12]

    Wang C H, Cheng J C 2014 Acta Phys. Sin. 63 134301 (in Chinese) [王成会, 程建春 2014 物理学报 63 134301]

    [13]

    Wu J, Fan T B 2014 Chin. Phys. B 23 104302

    [14]

    Wang L, Tu J 2014 Chin. Phys. B 23 124302

    [15]

    Ye Z 1996 J. Acoust. Soc. Am. 100 2011

    [16]

    Sadighi-Bonabi R, Rezaee N, Ebrahimi H, Mirheydari M 2010 Phys. Rev. E 82 016316

    [17]

    Gaunaurd G C, Huang H S 2000 J. Acoust. Soc. Am. 107 95

    [18]

    Kapodistrias G, Dahl P H 2012 J. Acoust. Soc. Am. 131 4243

    [19]

    Church C C 1995 J. Acoust. Soc. Am. 97 1510

    [20]

    Zabolotskaya E A 1984 Sov. Phys. Acoust 30 365

    [21]

    Ida M, Naoe T, Futakawa M 2007 Phys. Rev. E 76 046309

    [22]

    Yuan L, Katz J 2013 Phys. Fluids 25 073301

    [23]

    Alibakhshi M A 2011 J. Acoust. Soc. Am. 130 3321

    [24]

    Mettin R, Akhatov I, Parlitz U, Oho C D 1997 Phys. Rev. E 56 2924

  • [1]

    Carstensen E L, Foldy L L 1947 J. Acoust. Soc. Am. 19 481

    [2]

    Devin C J R 1959 J. Acoust. Soc. Am. 31 1654

    [3]

    Himmelblau D M 1964 Chem. Rev. 64 527

    [4]

    Kapodistrias G, Dahl P H 2001 J. Acoust. Soc. Am. 110 1271

    [5]

    Kohanvosky A A 2004 Am. J. Phys. 72 258

    [6]

    Cai L W 2004 J. Acoust. Soc. Am. 115 986

    [7]

    Kapodistrias G, Dahl P H 2000 J. Acoust. Soc. Am. 107 3006

    [8]

    Farmer D M, Deane G B 2001 IEEE J. Oceanic Eng. 26 113

    [9]

    Flynn H G 1975 J. Acoust. Soc. Am. 57 1379

    [10]

    Qian Z W 1981 Acta Phys. Sin. 30 442 (in Chinese) [钱祖文 1981 物理学报 30 442]

    [11]

    Wang Y, Lin S Y 2014 Acta Phys. Sin. 63 034301 (in Chinese) [王勇, 林书玉 2014 物理学报 63 034301]

    [12]

    Wang C H, Cheng J C 2014 Acta Phys. Sin. 63 134301 (in Chinese) [王成会, 程建春 2014 物理学报 63 134301]

    [13]

    Wu J, Fan T B 2014 Chin. Phys. B 23 104302

    [14]

    Wang L, Tu J 2014 Chin. Phys. B 23 124302

    [15]

    Ye Z 1996 J. Acoust. Soc. Am. 100 2011

    [16]

    Sadighi-Bonabi R, Rezaee N, Ebrahimi H, Mirheydari M 2010 Phys. Rev. E 82 016316

    [17]

    Gaunaurd G C, Huang H S 2000 J. Acoust. Soc. Am. 107 95

    [18]

    Kapodistrias G, Dahl P H 2012 J. Acoust. Soc. Am. 131 4243

    [19]

    Church C C 1995 J. Acoust. Soc. Am. 97 1510

    [20]

    Zabolotskaya E A 1984 Sov. Phys. Acoust 30 365

    [21]

    Ida M, Naoe T, Futakawa M 2007 Phys. Rev. E 76 046309

    [22]

    Yuan L, Katz J 2013 Phys. Fluids 25 073301

    [23]

    Alibakhshi M A 2011 J. Acoust. Soc. Am. 130 3321

    [24]

    Mettin R, Akhatov I, Parlitz U, Oho C D 1997 Phys. Rev. E 56 2924

  • [1] 李亮亮, 王晓方. 高能带电粒子束对陡峭密度梯度区照相的散射效应解析模型及散射调制现象的特征. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212269
    [2] 李顺, 李正军, 屈檀, 李海英, 吴振森. 双零阶贝塞尔波束的传播及对单轴各向异性球的散射特性. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220491
    [3] 李想, 陈勇, 封皓, 綦磊. 声波激励下管路轴向分布双气泡动力学特性分析. 物理学报, 2020, 69(18): 184703. doi: 10.7498/aps.69.20200546
    [4] 清河美, 那仁满都拉. 空化多泡中大气泡对小气泡空化效应的影响. 物理学报, 2019, 68(23): 234302. doi: 10.7498/aps.68.20191198
    [5] 付成花. 微纳粒子光学散射分析. 物理学报, 2017, 66(9): 097301. doi: 10.7498/aps.66.097301
    [6] 马艳, 林书玉, 徐洁, 唐一璠. 非球形效应对强声场中次Bjerknes力的影响. 物理学报, 2017, 66(1): 014302. doi: 10.7498/aps.66.014302
    [7] 程晨, 史泽林, 崔生成, 徐青山. 改进的单次散射相函数解析表达式. 物理学报, 2017, 66(18): 180201. doi: 10.7498/aps.66.180201
    [8] 庄佳衍, 陈钱, 何伟基, 冒添逸. 基于压缩感知的动态散射成像. 物理学报, 2016, 65(4): 040501. doi: 10.7498/aps.65.040501
    [9] 白敏, 宣荣喜, 宋建军, 张鹤鸣, 胡辉勇, 舒斌. 压应变Ge/(001)Si1-xGex空穴散射与迁移率模型. 物理学报, 2015, 64(3): 038501. doi: 10.7498/aps.64.038501
    [10] 张会云, 刘蒙, 尹贻恒, 吴志心, 申端龙, 张玉萍. 基于格林函数法研究金属线栅在太赫兹波段的散射特性. 物理学报, 2013, 62(19): 194207. doi: 10.7498/aps.62.194207
    [11] 王勇, 林书玉, 莫润阳, 张小丽. 含气泡液体中气泡振动的研究. 物理学报, 2013, 62(13): 134304. doi: 10.7498/aps.62.134304
    [12] 王海华, 孙贤明. 两种按比例混合颗粒系的多次散射模拟. 物理学报, 2012, 61(15): 154204. doi: 10.7498/aps.61.154204
    [13] 赵太飞, 柯熙政. Monte Carlo方法模拟非直视紫外光散射覆盖范围. 物理学报, 2012, 61(11): 114208. doi: 10.7498/aps.61.114208
    [14] 贺静波, 刘忠, 胡生亮. 基于海杂波散射特性的微弱信号检测方法. 物理学报, 2011, 60(11): 110208. doi: 10.7498/aps.60.110208
    [15] 刘文军, 毛宏燕, 付国庆, 曲士良. 散射介质中多重散射太赫兹脉冲的时域统计特性. 物理学报, 2010, 59(2): 913-917. doi: 10.7498/aps.59.913
    [16] 陈星, 夏云杰. 双模压缩真空态和纠缠相干态的一维势垒散射. 物理学报, 2010, 59(1): 80-86. doi: 10.7498/aps.59.80
    [17] 王清华, 张颖颖, 来建成, 李振华, 贺安之. Mie理论在生物组织散射特性分析中的应用. 物理学报, 2007, 56(2): 1203-1207. doi: 10.7498/aps.56.1203
    [18] 刘丽想, 杜国浩, 胡 雯, 骆玉宇, 谢红兰, 陈 敏, 肖体乔. 利用定量相衬成像消除X射线同轴轮廓成像中散射的影响. 物理学报, 2006, 55(12): 6387-6394. doi: 10.7498/aps.55.6387
    [19] 白 璐, 吴振森, 陈 辉, 郭立新. 高斯波束入射下串粒子的散射问题. 物理学报, 2005, 54(5): 2025-2029. doi: 10.7498/aps.54.2025
    [20] 李飞飞, 许京军, 刘思敏, 乔海军, 张光寅. c向切割LiNbO3∶Fe晶体中光折变光散射. 物理学报, 2001, 50(12): 2341-2344. doi: 10.7498/aps.50.2341
计量
  • 文章访问数:  3367
  • PDF下载量:  199
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-01
  • 修回日期:  2015-09-01
  • 刊出日期:  2016-01-05

次Bjerknes力作用下气泡的体积振动和散射声场

  • 1. 陕西师范大学, 陕西省超声学重点实验室, 西安 710062;
  • 2. 宁夏师范学院物理与信息技术学院, 固原 756000
  • 通信作者: 林书玉, sylin@snnu.edu.cn
    基金项目: 国家自然科学基金(批准号: 11174192, 11374200, 11474192)资助的课题.

摘要: 利用Lagrange方程得到了次Bjerknes力作用下气泡的体积振动方程, 并探讨了次Bjerknes力作用下不同参数对气泡体积振动振幅和振动初相位的影响, 研究了振动初相位差为和0的气泡对在液体中形成的散射声场特征. 结果表明: 次Bjerknes作用力下, 相邻气泡半径、气泡间距、多方指数均能影响气泡的体积振动振幅, 气泡对的均衡半径、气泡间距和驱动频率则对气泡振动初相位产生明显影响; 相距很近、相位相差为的两个气泡的散射声压与气泡体积振动振幅、气泡间距、驱动频率和振动初相位有关, 随声场距离成反比减小, 与声场位置有关, 其平均散射声功率是单个孤立气泡的1/6 (kd12)2; 半径相同、相距很近、相位相同的两个气泡的散射声压与气泡振动初相位、体积振动振幅、气泡间距、驱动频率有关, 随声场距离成反比减小, 其平均散射声功率是单个孤立气泡的4倍.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回