搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非球形效应对强声场中次Bjerknes力的影响

马艳 林书玉 徐洁 唐一璠

引用本文:
Citation:

非球形效应对强声场中次Bjerknes力的影响

马艳, 林书玉, 徐洁, 唐一璠

Influnece of nonspherical effects on the secondary Bjerknes force in a strong acoustic field

Ma Yan, Lin Shu-Yu, Xu Jie, Tang Yi-Fan
PDF
导出引用
  • 考虑了非球形气泡在声场中的形状振动,推导了非球形气泡和球形气泡之间的次Bjerknes力方程,数值模拟了声场中非球形气泡和球形气泡之间的次Bjerknes力和两个球形气泡之间的次Bjerknes力,并对非球形气泡和球形气泡之间的次Bjerknes力的影响因素进行了分析讨论.研究结果表明:当驱动声压振幅大于非球形气泡的Black阈值且又能使得非球形气泡稳定振动时,在第一个声驱动周期内,非球形气泡和球形气泡之间的次Bjerknes力和两个球形气泡的次Bjerknes力方向差异较大,在大小上是两个球形气泡次Bjerkens力的数倍,且有着更长的作用距离.非球形气泡和球形气泡之间的次Bjerknes力取决于非球形气泡的形状模态、两个气泡初始半径的比值、驱动声压振幅、气泡间距和两个气泡的相对位置.
    The secondary Bjerknes force between bubbles in an acoustic field is a well-known acoustic phenomenon. The theoretical researches of the secondary Bjerknes force mainly focus on the case of two spherical bubbles. The secondary Bjerknes force between two spherical bubbles, calculated based on the linear equations, is very small and negligible. Therefore these theoretical researches donot give a good explanation for the phenomenon, such as “streamer formation” and multi-bubble sonoluminescence(MBSL). Experiments of sonoluminescence show that the shapes of the bubbles in a sound field are not entirely spherical. Nonspherical effects have an important influence on the secondary Bjerknes force when two bubbles come close to each other in a strong acoustic field(>1.0×105 Pa). How the shape distortion of a nonspherical bubble causes the secondary Bjerknes force between two bubbles to change, and how the secondary Bjerknes force affects the oscillations and movements of bubbles are major problems which we are to solve in the present research. The expression of the secondary Bjerknes force between a nonspherical bubble and a spherical bubble is obtained by considering the shape oscillation of a nonspherical bubble. We numerical simulate the secondary Bjerknes force between a nonspherical bubble and a spherical bubble based on the nonlinear oscillation equations of two bubbles, and compare the secondary Bjerknes force between a nonspherical bubble and a spherical bubble with the secondary Bjerknes force between two spherical bubbles in the same condition. We discuss the influence of nonspherical effects on the secondary Bjerknes force between two bubbles. The results show that when the amplitude of driving pressure is greater than the Blake threshold of a nonspherical bubble and makes the bubble oscillate stably, the secondary Bjerknes force between this nonspherical bubble and a spherical bubble is different from the secondary Bjerknes force between two spherical bubbles in direction and magnitude. The secondary Bjerknes force between a nonspherical bubble and a spherical bubble is much bigger than that between two spherical bubbles. The interactional distance of the secondary Bjerknes force between a nonspherical bubble and a spherical bubble is longer than that between two spherical bubbles. The secondary Bjerknes force between a spherical bubble and a nonspherical bubble depends on the radii of two bubbles, distance between two bubbles, shape mode of the nonspherical bubble and the amplitude of driving pressure. Our research is closer to the actual bubbles in liquid. We also prove that big mutual interaction between bubbles is the main cause for froming a stable structure between bubbles. For bubbles, big mutual interaction causing the cavitation becomes easier. These results are important for explaining the phenomenon in an acoustic field, such as “streamer formation” and MBSL.
      通信作者: 林书玉, sylin@snnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11374200,11674206)资助的课题.
      Corresponding author: Lin Shu-Yu, sylin@snnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant Nos. 11374200, 11674206).
    [1]

    Anthony H, Kaper T 2001 J. Fluid Mech. 445 377

    [2]

    Thomas J M, Sean M C 1997 J. Acoust. Soc. Am. 102 1522

    [3]

    Rossello J M, Dellavale D, Bonetto F J 2015 Ultrason. Sonochem. 22 59

    [4]

    Yuan L, Joseph K 2013 Phys. Fluids 25 073301

    [5]

    Eller A 1968 J. Acoust. Soc. Am. 43 107

    [6]

    Alexander A D 1997 J. Acoust. Soc. Am 102 747

    [7]

    David R, Pierre T B 2011 Phys. Fluids 23 042003

    [8]

    Mohammad A A 2011 J. Acoust. Soc. Am. 130 3321

    [9]

    Rasoul S B, Nastaran R 2010 Phys. Rev. E 82 016316

    [10]

    Crum L A 1975 J. Acoust. Soc. Am. 57 1363

    [11]

    Yoshida K J, Takaaki F 2011 J. Acoust. Soc. Am 130 135

    [12]

    Zabolotskaya E A 1984 Sov. Phys. Scoust 30 365

    [13]

    Ida M 2007 Phys. Rev. E 76 04309

    [14]

    Mettin R, Akhatov I, Parlitz U 1997 Phys. Rev. E 56 2924

    [15]

    Shao W H, Chen W Z 2013 J. Acoust. Soc. Am. 133 119

    [16]

    Prosperetti A 1977 Q. Appl. Math 34 339

    [17]

    Bogoyavlenskiy V A 2000 Phy. Rev. E 62 2158

    [18]

    Pelekasis N A, Tsamopouslos J A 1990 Phys. Fluids A 2 1328

    [19]

    Xie C G, An Y 2003 Acta Phys. Sin. 52 102 (in Chinese)[谢崇国, 安宇2003物理学报52 102]

    [20]

    Plesset M S 1954 J. Appl. Phys. 25 96

    [21]

    Brenner M P, Lohse D, Dupon T F 1995 Phys. Rev. Lett. 75 954

  • [1]

    Anthony H, Kaper T 2001 J. Fluid Mech. 445 377

    [2]

    Thomas J M, Sean M C 1997 J. Acoust. Soc. Am. 102 1522

    [3]

    Rossello J M, Dellavale D, Bonetto F J 2015 Ultrason. Sonochem. 22 59

    [4]

    Yuan L, Joseph K 2013 Phys. Fluids 25 073301

    [5]

    Eller A 1968 J. Acoust. Soc. Am. 43 107

    [6]

    Alexander A D 1997 J. Acoust. Soc. Am 102 747

    [7]

    David R, Pierre T B 2011 Phys. Fluids 23 042003

    [8]

    Mohammad A A 2011 J. Acoust. Soc. Am. 130 3321

    [9]

    Rasoul S B, Nastaran R 2010 Phys. Rev. E 82 016316

    [10]

    Crum L A 1975 J. Acoust. Soc. Am. 57 1363

    [11]

    Yoshida K J, Takaaki F 2011 J. Acoust. Soc. Am 130 135

    [12]

    Zabolotskaya E A 1984 Sov. Phys. Scoust 30 365

    [13]

    Ida M 2007 Phys. Rev. E 76 04309

    [14]

    Mettin R, Akhatov I, Parlitz U 1997 Phys. Rev. E 56 2924

    [15]

    Shao W H, Chen W Z 2013 J. Acoust. Soc. Am. 133 119

    [16]

    Prosperetti A 1977 Q. Appl. Math 34 339

    [17]

    Bogoyavlenskiy V A 2000 Phy. Rev. E 62 2158

    [18]

    Pelekasis N A, Tsamopouslos J A 1990 Phys. Fluids A 2 1328

    [19]

    Xie C G, An Y 2003 Acta Phys. Sin. 52 102 (in Chinese)[谢崇国, 安宇2003物理学报52 102]

    [20]

    Plesset M S 1954 J. Appl. Phys. 25 96

    [21]

    Brenner M P, Lohse D, Dupon T F 1995 Phys. Rev. Lett. 75 954

  • [1] 乌日乐格, 那仁满都拉. 具有传质传热及扩散效应的双气泡的相互作用. 物理学报, 2023, 72(19): 194703. doi: 10.7498/aps.72.20230863
    [2] 张雅婧, 李凡, 雷照康, 王铭浩, 王成会, 莫润阳. 非球形气泡的超声定量检测. 物理学报, 2023, 72(3): 034301. doi: 10.7498/aps.72.20222074
    [3] 李凡, 张先梅, 田华, 胡静, 陈时, 王成会, 郭建中, 莫润阳. 液体薄层中环链状空化泡云结构稳定性分析. 物理学报, 2022, 71(8): 084303. doi: 10.7498/aps.71.20212257
    [4] 张先梅, 王成会, 郭建中, 莫润阳, 胡静, 陈时. 无界弹性介质球形液体空腔中的气泡的动力学. 物理学报, 2021, 70(21): 214305. doi: 10.7498/aps.70.20210869
    [5] 吴学由, 梁金福. 超声场中单气泡的平移和非球形振动. 物理学报, 2021, 70(18): 184301. doi: 10.7498/aps.70.20210513
    [6] 王存海, 郑树, 张欣欣. 非规则形状介质内辐射-导热耦合传热的间断有限元求解. 物理学报, 2020, 69(3): 034401. doi: 10.7498/aps.69.20191185
    [7] 张陶然, 莫润阳, 胡静, 陈时, 王成会, 郭建中. 弹性介质包围的球形液体腔中气泡和粒子的相互作用. 物理学报, 2020, 69(23): 234301. doi: 10.7498/aps.69.20200764
    [8] 李想, 陈勇, 封皓, 綦磊. 声波激励下管路轴向分布双气泡动力学特性分析. 物理学报, 2020, 69(18): 184703. doi: 10.7498/aps.69.20200546
    [9] 张鹏利, 林书玉, 朱华泽, 张涛. 声场中球形空化云中气泡的耦合谐振. 物理学报, 2019, 68(13): 134301. doi: 10.7498/aps.68.20190360
    [10] 清河美, 那仁满都拉. 空化多泡中大气泡对小气泡空化效应的影响. 物理学报, 2019, 68(23): 234302. doi: 10.7498/aps.68.20191198
    [11] 马艳, 林书玉, 徐洁. 声场中空化气泡的耦合振动及形状不稳定性的研究. 物理学报, 2018, 67(3): 034301. doi: 10.7498/aps.67.20171573
    [12] 王德鑫, 那仁满都拉. 耦合双泡声空化特性的理论研究. 物理学报, 2018, 67(3): 037802. doi: 10.7498/aps.67.20171805
    [13] 梁煜, 关奔, 翟志刚, 罗喜胜. 激波汇聚效应对球形气泡演化影响的数值研究. 物理学报, 2017, 66(6): 064701. doi: 10.7498/aps.66.064701
    [14] 马艳, 林书玉, 鲜晓军. 次Bjerknes力作用下气泡的体积振动和散射声场. 物理学报, 2016, 65(1): 014301. doi: 10.7498/aps.65.014301
    [15] 沙莎, 陈志华, 张庆兵. 激波与SF6球形气泡相互作用的数值研究. 物理学报, 2015, 64(1): 015201. doi: 10.7498/aps.64.015201
    [16] 李明杨, 孙超, 邵炫. 模态信息非完备采样对水下声源检测的影响及改进方法. 物理学报, 2014, 63(20): 204302. doi: 10.7498/aps.63.204302
    [17] 王小飞, 曲建岭, 高峰, 周玉平, 张翔宇. 基于噪声辅助非均匀采样复数据经验模态分解的混沌信号降噪. 物理学报, 2014, 63(17): 170203. doi: 10.7498/aps.63.170203
    [18] 裴利军, 邱本花. 模态分解法在非恒同耦合系统同步研究中的推广. 物理学报, 2010, 59(1): 164-170. doi: 10.7498/aps.59.164
    [19] 韩国霞, 韩一平. 激光对含偏心核球形粒子的辐射俘获力. 物理学报, 2009, 58(9): 6167-6173. doi: 10.7498/aps.58.6167
    [20] 周晓华, 张劭光. 球形拓扑中复杂形状生物膜泡的获得及其稳定性分析. 物理学报, 2006, 55(10): 5568-5574. doi: 10.7498/aps.55.5568
计量
  • 文章访问数:  4435
  • PDF下载量:  194
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-05
  • 修回日期:  2016-10-10
  • 刊出日期:  2017-01-05

/

返回文章
返回