搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

耦合双泡声空化特性的理论研究

王德鑫 那仁满都拉

引用本文:
Citation:

耦合双泡声空化特性的理论研究

王德鑫, 那仁满都拉

Theoretical study of coupling double-bubbles ultrasonic cavitation characteristics

Wang De-Xin, Naranmandula
PDF
导出引用
  • 当双泡中心间距足够小时,由于气泡间辐射压力波的存在,作用在气泡上的压力不等于外部驱动压力.通过考虑双泡之间的辐射压力波,利用改进的Keller-Miksis方程,分别计算了不同大小、不同间距、含不同惰性气体的双泡在声空化过程中半径的变化、次Bjerknes力的变化和双泡内温度的变化.计算结果表明,当双泡大小不同时,小气泡受到的抑制作用较强,温度变化也比较大.随着双泡间距离从100 m增大到1 cm时,气泡间的次Bjerknes力的数量级从10-4N减小到10-8N.含不同惰性气体的耦合双泡在回弹阶段表现出明显不同的振荡规律.
    When the distances between bubbles are small enough, the pressure acting on the bubble is not the same as the external driving pressure, because of the radiation pressure wave of the neighboring bubbles. The force between two bubbles due to the bubble-radiated pressure waves by the neighboring bubbles is called the secondary Bjerknes force. Considering the bubble-radiated pressure waves and using the modified Keller-Miksis equation and van der Waals equation, the changes of the radius, the secondary Bjerknes force and the temperature of the double bubbles, which have different sizes, interspaces in between, and noble gases, in the process of ultrasonic cavitation are calculated. The calculations are based on the assumption that the locations of double bubbles stay unchanged in the oscillation process and their shapes always keep spherical. The double bubbles can also oscillate synchronously under the influence of the driving ultrasonic field. Because the sound propagation speed in water extremely fast, the time-delay effect on the secondary Bjerknes force is neglected. From the calculated results, the following conclusions can be drawn: when the sizes of double bubbles are different, the smaller bubble is more restrained and the temperature change is larger. When the sizes of double bubbles are the same, the Bjerknes force is negative, indicating that the coupled double bubbles are attracted to each other during the oscillation and the Bjerknes force has two radial oscillations in one driving period. As the interspace between double bubbles increases from 100 m to 1 cm, the secondary Bjerknes force decreases from 10-4 N to 10-8 N, indicating that the interaction between double bubbles increases with the decreasing of the distance between the bubbles. The coupling double bubbles with different noble gases have only a small difference in maximum radius in the stage of expansion, but have different oscillation patterns clearly in the stage of rebound. This is because the bubble expansion process can be seen as an isothermal process, the effective polytropic exponent is approximately equal to 1. The collapse process can be regarded as an adiabatic process, so the effective polytropic exponent of noble gas with large molecules changes rapidly, and the influence of the oscillation of the bubbles becomes large. Our work provides a theoretical basis for establishing the acoustic cavitation model of different-number bubbles, and calculating the interaction force between different-number bubbles.
      通信作者: 那仁满都拉, nrmdbf@126.com
    • 基金项目: 国家自然科学基金(批准号:11462019)资助的课题.
      Corresponding author: Naranmandula, nrmdbf@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11462019).
    [1]

    Rayleigh L 1917 Philos. Mag. 34 94

    [2]

    Plesset M S 1949 J. Appl. Mech. 16 277

    [3]

    Keller J B, Miksis M 1980 J. Acoust. Soc. Am. 68 628

    [4]

    Kyuichi Y 2002 J. Acoust. Soc. Am. 112 1405

    [5]

    Ida M, Naoe T, Futakawa M 2007 Phys. Rev. E 76 046309

    [6]

    Wang C H, Mo R Y, Hu J, Chen S 2015 Acta Phys. Sin. 64 234301 (in Chinese) [王成会, 莫润阳, 胡静, 陈时 2015 物理学报 64 234301]

    [7]

    Mettin R, Akhatov I, Parlitz U, Ohl C D, Lauterborn W 1997 Phys. Rev. E 56 2924

    [8]

    Lu Y G, Wu X H 2011 Acta Phys. Sin. 60 046202 (in Chinese) [卢义刚, 吴雄慧 2011 物理学报 60 046202]

    [9]

    Pu Z Q, Zhang W, Shi K R, Zhang J H, Wu Y L 2005 J. Tsinghua Univ. (Science and Technology) 45 1450 (in Chinese) [蒲中奇, 张伟, 施克仁, 张俊华, 吴玉林 2005 清华大学学报: 自然科学版 45 1450]

    [10]

    Shirota M, Yamashita K, Inamura T 2012 AIP Conf. Proc. 1474 155

    [11]

    Zhang W J, An Y 2013 Tech. Acoust. 32 125 (in Chinese) [张文娟, 安宇 2013 声学技术 32 125]

    [12]

    Rasoul A, Rezaee N, Ebrahimi H, Mirheydari M 2010 Phys. Rev. E 82 016316

    [13]

    Pelekasis N A, Tsanopoulos J A 1993 J. Fluid Mech. 254 467

    [14]

    Pelekasis N A, Tsanopoulos J A 1993 J. Fluid Mech. 254 501

    [15]

    Matula T J, Cordry S M, Roy R A 1997 J. Acoust. Soc. Am. 102 1522

    [16]

    Ma Y, Lin S Y, Xian X J 2016 Acta Phys. Sin. 65 014301 (in Chinese) [马艳, 林书玉, 鲜晓军 2016 物理学报 65 014301]

    [17]

    Hu J, Lin S Y, Wang C H, Li J 2013 Acta Phys. Sin. 62 134303 (in Chinese) [胡静, 林书玉, 王成会, 李锦 2013 物理学报 62 134303]

    [18]

    Ma Y, Lin S Y, Xu J, Tang Y F 2017 Acta Phys. Sin. 66 014302 (in Chinese) [马艳, 林书玉, 徐洁, 唐一璠 2017 物理学报 66 014302]

    [19]

    Hilgenfeldt S, Grossmann S, Lohse D 1999 Phys. Fluids 11 1318

    [20]

    Hiller R, Putterman S J, Barber B P 1992 Phys. Rev. Lett. 69 1182

    [21]

    Zhou C, Chen W Z, Cui W C 2013 Acta Phys. Sin. 62 087805 (in Chinese) [周超, 陈伟中, 崔炜程 2013 物理学报 62 087805]

    [22]

    Gheshlaghi M 2015 Ext. J. Appl. Sci. 3 257

  • [1]

    Rayleigh L 1917 Philos. Mag. 34 94

    [2]

    Plesset M S 1949 J. Appl. Mech. 16 277

    [3]

    Keller J B, Miksis M 1980 J. Acoust. Soc. Am. 68 628

    [4]

    Kyuichi Y 2002 J. Acoust. Soc. Am. 112 1405

    [5]

    Ida M, Naoe T, Futakawa M 2007 Phys. Rev. E 76 046309

    [6]

    Wang C H, Mo R Y, Hu J, Chen S 2015 Acta Phys. Sin. 64 234301 (in Chinese) [王成会, 莫润阳, 胡静, 陈时 2015 物理学报 64 234301]

    [7]

    Mettin R, Akhatov I, Parlitz U, Ohl C D, Lauterborn W 1997 Phys. Rev. E 56 2924

    [8]

    Lu Y G, Wu X H 2011 Acta Phys. Sin. 60 046202 (in Chinese) [卢义刚, 吴雄慧 2011 物理学报 60 046202]

    [9]

    Pu Z Q, Zhang W, Shi K R, Zhang J H, Wu Y L 2005 J. Tsinghua Univ. (Science and Technology) 45 1450 (in Chinese) [蒲中奇, 张伟, 施克仁, 张俊华, 吴玉林 2005 清华大学学报: 自然科学版 45 1450]

    [10]

    Shirota M, Yamashita K, Inamura T 2012 AIP Conf. Proc. 1474 155

    [11]

    Zhang W J, An Y 2013 Tech. Acoust. 32 125 (in Chinese) [张文娟, 安宇 2013 声学技术 32 125]

    [12]

    Rasoul A, Rezaee N, Ebrahimi H, Mirheydari M 2010 Phys. Rev. E 82 016316

    [13]

    Pelekasis N A, Tsanopoulos J A 1993 J. Fluid Mech. 254 467

    [14]

    Pelekasis N A, Tsanopoulos J A 1993 J. Fluid Mech. 254 501

    [15]

    Matula T J, Cordry S M, Roy R A 1997 J. Acoust. Soc. Am. 102 1522

    [16]

    Ma Y, Lin S Y, Xian X J 2016 Acta Phys. Sin. 65 014301 (in Chinese) [马艳, 林书玉, 鲜晓军 2016 物理学报 65 014301]

    [17]

    Hu J, Lin S Y, Wang C H, Li J 2013 Acta Phys. Sin. 62 134303 (in Chinese) [胡静, 林书玉, 王成会, 李锦 2013 物理学报 62 134303]

    [18]

    Ma Y, Lin S Y, Xu J, Tang Y F 2017 Acta Phys. Sin. 66 014302 (in Chinese) [马艳, 林书玉, 徐洁, 唐一璠 2017 物理学报 66 014302]

    [19]

    Hilgenfeldt S, Grossmann S, Lohse D 1999 Phys. Fluids 11 1318

    [20]

    Hiller R, Putterman S J, Barber B P 1992 Phys. Rev. Lett. 69 1182

    [21]

    Zhou C, Chen W Z, Cui W C 2013 Acta Phys. Sin. 62 087805 (in Chinese) [周超, 陈伟中, 崔炜程 2013 物理学报 62 087805]

    [22]

    Gheshlaghi M 2015 Ext. J. Appl. Sci. 3 257

  • [1] 齐海东, 王晶, 陈中军, 吴忠华, 宋西平. 温度对马氏体和铁素体晶格常数影响规律. 物理学报, 2022, 71(9): 098301. doi: 10.7498/aps.71.20211954
    [2] 王钰豪, 刘建国, 徐亮, 刘文清, 宋庆利, 金岭, 徐寒杨. 不同温度压力对浓度反演精度的定量分析. 物理学报, 2021, 70(7): 073201. doi: 10.7498/aps.70.20201672
    [3] 祁科武, 赵宇宏, 郭慧俊, 田晓林, 侯华. 温度对小角度对称倾斜晶界位错运动影响的晶体相场模拟. 物理学报, 2019, 68(17): 170504. doi: 10.7498/aps.68.20190051
    [4] 马艳, 林书玉, 徐洁, 唐一璠. 非球形效应对强声场中次Bjerknes力的影响. 物理学报, 2017, 66(1): 014302. doi: 10.7498/aps.66.014302
    [5] 朱金荣, 范吕超, 苏垣昌, 胡经国. 温度、缺陷对磁畴壁动力学行为的影响. 物理学报, 2016, 65(23): 237501. doi: 10.7498/aps.65.237501
    [6] 邓春雨, 侯尚林, 雷景丽, 王道斌, 李晓晓. 单模光纤中用声波导布里渊散射同时测量温度和应变. 物理学报, 2016, 65(24): 240702. doi: 10.7498/aps.65.240702
    [7] 马艳, 林书玉, 鲜晓军. 次Bjerknes力作用下气泡的体积振动和散射声场. 物理学报, 2016, 65(1): 014301. doi: 10.7498/aps.65.014301
    [8] 唐远河, 王淑华, 崔进, 徐颖, 梅屹峰, 李存霞. 被动遥测矿井CO气体温度及浓度的正演研究. 物理学报, 2016, 65(18): 184201. doi: 10.7498/aps.65.184201
    [9] 孙素蓉, 王海兴. 惰性气体原子间相互作用势比较研究. 物理学报, 2015, 64(14): 143401. doi: 10.7498/aps.64.143401
    [10] 徐晖, 田晓波, 步凯, 李清江. 温度改变对钛氧化物忆阻器导电特性的影响. 物理学报, 2014, 63(9): 098402. doi: 10.7498/aps.63.098402
    [11] 蒋中英, 张国梁, 马晶, 朱涛. 磷脂在膜结构间的交换:温度和离子强度的影响. 物理学报, 2013, 62(1): 018701. doi: 10.7498/aps.62.018701
    [12] 阴明, 周寿桓, 冯国英. 可调谐准相位匹配高效宽带二次谐波转换. 物理学报, 2012, 61(23): 234206. doi: 10.7498/aps.61.234206
    [13] 李岩, 傅海威, 邵敏, 李晓莉. 石墨点阵柱状光子晶体共振腔的温度特性. 物理学报, 2011, 60(7): 074219. doi: 10.7498/aps.60.074219
    [14] 程存峰, 杨国民, 蒋蔚, 潘虎, 孙羽, 刘安雯, 成国胜, 胡水明. 激光冷却获得高亮度的亚稳态惰性气体原子束和原子阱. 物理学报, 2011, 60(10): 103701. doi: 10.7498/aps.60.103701
    [15] 程正富, 龙晓霞, 郑瑞伦. 温度对光学微腔光子激子系统玻色凝聚的影响. 物理学报, 2010, 59(12): 8377-8384. doi: 10.7498/aps.59.8377
    [16] 韩茹, 樊晓桠, 杨银堂. n-SiC拉曼散射光谱的温度特性. 物理学报, 2010, 59(6): 4261-4266. doi: 10.7498/aps.59.4261
    [17] 王亚珍, 黄平, 龚中良. 温度对微界面摩擦影响的研究. 物理学报, 2010, 59(8): 5635-5640. doi: 10.7498/aps.59.5635
    [18] 陈丕恒, 敖冰云, 李炬, 李嵘, 申亮. 温度对bcc铁中He行为影响的模拟研究. 物理学报, 2009, 58(4): 2605-2611. doi: 10.7498/aps.58.2605
    [19] 陈国庆, 吴亚敏, 陆兴中. 金属/电介质颗粒复合介质光学双稳的温度效应. 物理学报, 2007, 56(2): 1146-1151. doi: 10.7498/aps.56.1146
    [20] 郭建军. 惰性气体输运性质的理论计算. 物理学报, 2002, 51(3): 497-500. doi: 10.7498/aps.51.497
计量
  • 文章访问数:  5860
  • PDF下载量:  163
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-08
  • 修回日期:  2017-09-21
  • 刊出日期:  2018-02-05

/

返回文章
返回