搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

晶面偏角对利用Voigt函数法计算硅单晶本征晶格应变的影响

朱杰 姬梦 马爽

引用本文:
Citation:

晶面偏角对利用Voigt函数法计算硅单晶本征晶格应变的影响

朱杰, 姬梦, 马爽

Influence of asymmetrical angle on crystal lattice strain analysis using Voigt-function method

Zhu Jie, Ji Meng, Ma Shuang
PDF
导出引用
  • 研究并制备了不同晶面偏角的Si(111)单晶,经过研磨和抛光使表面粗糙度低至3.4达到超光滑水平,消除了表面和亚表面损伤层以及其所产生的应力变化.利用高精度X射线衍射仪分别测定了在不同晶面偏角条件下衍射曲线的半高全宽和积分宽度.应用Voigt函数法分析计算了微观应变,通过理论计算和实验对比可知,Si(111)单晶在晶面偏角达到0.749时,偏角本身所带来的衍射峰半高全宽变化使计算出的应变值误差大于5%.研究结果为其他晶体类似研究提供了重要参考.
    The Voigt function provides a rapid and easy method of explaining the breadths of diffraction profiles, and it defines two main broadening types: the domain size and strain component. The latter is caused by lattice imperfection (dislocation and different defects). Thus, diffraction can be used to measure crystal strain with very high precision and accuracy. However, each of all the crystals used in the present study has asymmetrical angle due to the processes of cutting grinding and polishing. This deviation angle is the angle between the considered lattice plane and crystal surface. The crystal with asymmetrical angle also satisfies Bragg's law but with different incident angle and reflected one. In the following, we investigate the crystal strain as a function of asymmetrical angle to evaluate the lattice distortion in detail. The single crystal silicon samples with different asymmetrical angles (in a range from 0.008 to 5.306) are prepared in this experiment. The lattice plane is (111). After grinding and polishing, the surface and subsurface damage are almost wiped off to remove internal stress which comes from cracks and grain refinement. Only broadening from lattice strain depends on the nature of imperfection, and the shape of crystallite can be left. It is convenient to acquire the full width at half maximum (FWHM) and integral breadth of diffraction curve by high resolution X-ray diffraction technique. Using the Voigt function method, diffraction line is characterized by all three parameters of the half-width integral breadth and form factor. The crystal lattice strains are calculated by analyzing the experimental line profile composed of Cauchy and Gaussian parts. Simulation of coherence diffraction of asymmetric crystal silicon is achieved by ray tracing code SHADOW. Both the theoretical calculation and experimental results show that if asymmetrical angle reaches 0.749, the half-width and integral breadth of diffraction curve change obviously compared with the situation where asymmetrical angle reaches 0.008. This is why the calculation error of crystal strain will be beyond 5% by the Voigt function method no matter whether we use theoretical value or experimental data. It is shown that the precise crystal cut is extremely important for device application. And this conclusion will also be helpful in other crystal studies by using X-ray diffraction parameters.
      通信作者: 朱杰, jzhu008@tongji.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11575127)和国家重点研发计划(批准号:2017YFA0403304)资助的课题.
      Corresponding author: Zhu Jie, jzhu008@tongji.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11575127) and the National Key RD Program of China (Grant No. 2017YFA0403304).
    [1]

    Zaprazny Z, Korytar D, Siffalovic P, Jergel M, Demydenko M, Mikulik P, Dobrocka E, Ferrari C, Vagovic P, Mikloska M 2014 Advances in X-Ray/EUV Optics and Components IX 9207 920701Y

    [2]

    Guigay J P, Ferrero C 2016 Acta Cryst. A 72 489

    [3]

    Yang D R, Fan R X, Yao H N 1994 Mater. Sci. Eng. 12 33 (in Chinese) [杨德仁, 樊瑞新, 姚鸿年 1994 材料科学与工程 12 33]

    [4]

    Zhao B H, Chen D L 1991 J. Zhejiang Univ. -Sci. A 25 538 (in Chinese) [赵炳辉, 陈立登 1991 浙江大学学报 25 538]

    [5]

    Zhu N C, Li R S, Chen J Y, Xu S S 1990 Acta Phys. Sin. 39 770 (in Chinese) [朱南昌, 李润身, 陈京一, 许顺生 1990 物理学报 39 770]

    [6]

    Cembali F, Fabbri R, Servidori M, Zani A 1992 J. Appl. Cryst. 25 424

    [7]

    Huang J Y, E J C, Huang J W, Sun T, Fezzaa K, Xu S L, Luo S N 2016 Acta Mater. 114 136

    [8]

    Sun Y, Wang S L, Gu Q T, Xu X G, Ding J X, Liu W J, Liu G X, Zhu S J 2012 Acta Phys. Sin. 61 210203 (in Chinese) [孙云, 王圣来, 顾庆天, 许心光, 丁健旭, 刘文洁, 刘光霞, 朱胜军 2012 物理学报 61 210203]

    [9]

    Dickey E C, Drivid V P, Hubbard C R 1997 J. Am. Ceram. Soc. 80 2773

    [10]

    Yoshiike T, Fujii N, Kozaki S 1997 J. Appl. Phys. 36 5764

    [11]

    Ward Iii A, Hendricks R W 1997 Proceding 5th International Conference Residual Stresses Lynkping, Sweden, June 16-18, 1997 p1054

    [12]

    Suzuki H, Akita K, Misawa H 2003 Jpn. Soc. Appl. Phys. 42 2876

    [13]

    Langford J I 1978 J. Appl. Cryst. 11 10

    [14]

    Macherauch E, Wohlfahrt H, Wolfstieg U 1973 Hart. Tech. Mitt. 28 201

    [15]

    de Kerjser Th H, Langford J I, Mittemeijer E J, Vogels A B P 1982 J. Appl. Cryst. 15 308

    [16]

    Chang M, Xu S L 1993 Acta Phys. Sin. 42 446 (in Chinese) [常明, 许守廉 1993 物理学报 42 446]

    [17]

    Chang M, Xing J H, Xu S L 1994 Mater. Sci. Technol. 2 21 (in Chinese) [常明, 邢金华, 许守廉 1994 材料科学与工艺 2 21]

    [18]

    Xu S S, Feng D 1987 X Ray Diffraction Topography (Beijing: Science Press) p168 (in Chinese) [许顺生, 冯端 1987 X射线衍衬貌相学 (北京: 科学出版社)第168页]

    [19]

    Fan Q C 2012 Mater. Sci. 2 106 (in Chinese) [范群成 2012 材料科学 2 106]

    [20]

    Chen H F, Liu K J 2006 J. Changshu Institute Technol. 20 39 (in Chinese) [陈惠芬, 刘克家 2006 常熟理工学院学报 20 39]

    [21]

    Wang C C, Fang Q H, Chen J B, Liu Y W, Jin T 2016 Int. J. Adv. Manuf. Technol. 83 937

    [22]

    Buchwald R, Frohlich K, Wurzner S, Lehmann T, Sunder K, Moller H J 2013 Energy Procedia 38 901

    [23]

    Fukumori T, Futagami K, Kuroki K 2004 Jpn. J. Appl. Phys. 43 8331

    [24]

    Zhang Y X 2006 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese) [张银霞 2006 博士学位论文(大连: 大连理工大学)]

    [25]

    Langford J I, Wilson A J C 1978 J. Appl. Cryst. 11 102

  • [1]

    Zaprazny Z, Korytar D, Siffalovic P, Jergel M, Demydenko M, Mikulik P, Dobrocka E, Ferrari C, Vagovic P, Mikloska M 2014 Advances in X-Ray/EUV Optics and Components IX 9207 920701Y

    [2]

    Guigay J P, Ferrero C 2016 Acta Cryst. A 72 489

    [3]

    Yang D R, Fan R X, Yao H N 1994 Mater. Sci. Eng. 12 33 (in Chinese) [杨德仁, 樊瑞新, 姚鸿年 1994 材料科学与工程 12 33]

    [4]

    Zhao B H, Chen D L 1991 J. Zhejiang Univ. -Sci. A 25 538 (in Chinese) [赵炳辉, 陈立登 1991 浙江大学学报 25 538]

    [5]

    Zhu N C, Li R S, Chen J Y, Xu S S 1990 Acta Phys. Sin. 39 770 (in Chinese) [朱南昌, 李润身, 陈京一, 许顺生 1990 物理学报 39 770]

    [6]

    Cembali F, Fabbri R, Servidori M, Zani A 1992 J. Appl. Cryst. 25 424

    [7]

    Huang J Y, E J C, Huang J W, Sun T, Fezzaa K, Xu S L, Luo S N 2016 Acta Mater. 114 136

    [8]

    Sun Y, Wang S L, Gu Q T, Xu X G, Ding J X, Liu W J, Liu G X, Zhu S J 2012 Acta Phys. Sin. 61 210203 (in Chinese) [孙云, 王圣来, 顾庆天, 许心光, 丁健旭, 刘文洁, 刘光霞, 朱胜军 2012 物理学报 61 210203]

    [9]

    Dickey E C, Drivid V P, Hubbard C R 1997 J. Am. Ceram. Soc. 80 2773

    [10]

    Yoshiike T, Fujii N, Kozaki S 1997 J. Appl. Phys. 36 5764

    [11]

    Ward Iii A, Hendricks R W 1997 Proceding 5th International Conference Residual Stresses Lynkping, Sweden, June 16-18, 1997 p1054

    [12]

    Suzuki H, Akita K, Misawa H 2003 Jpn. Soc. Appl. Phys. 42 2876

    [13]

    Langford J I 1978 J. Appl. Cryst. 11 10

    [14]

    Macherauch E, Wohlfahrt H, Wolfstieg U 1973 Hart. Tech. Mitt. 28 201

    [15]

    de Kerjser Th H, Langford J I, Mittemeijer E J, Vogels A B P 1982 J. Appl. Cryst. 15 308

    [16]

    Chang M, Xu S L 1993 Acta Phys. Sin. 42 446 (in Chinese) [常明, 许守廉 1993 物理学报 42 446]

    [17]

    Chang M, Xing J H, Xu S L 1994 Mater. Sci. Technol. 2 21 (in Chinese) [常明, 邢金华, 许守廉 1994 材料科学与工艺 2 21]

    [18]

    Xu S S, Feng D 1987 X Ray Diffraction Topography (Beijing: Science Press) p168 (in Chinese) [许顺生, 冯端 1987 X射线衍衬貌相学 (北京: 科学出版社)第168页]

    [19]

    Fan Q C 2012 Mater. Sci. 2 106 (in Chinese) [范群成 2012 材料科学 2 106]

    [20]

    Chen H F, Liu K J 2006 J. Changshu Institute Technol. 20 39 (in Chinese) [陈惠芬, 刘克家 2006 常熟理工学院学报 20 39]

    [21]

    Wang C C, Fang Q H, Chen J B, Liu Y W, Jin T 2016 Int. J. Adv. Manuf. Technol. 83 937

    [22]

    Buchwald R, Frohlich K, Wurzner S, Lehmann T, Sunder K, Moller H J 2013 Energy Procedia 38 901

    [23]

    Fukumori T, Futagami K, Kuroki K 2004 Jpn. J. Appl. Phys. 43 8331

    [24]

    Zhang Y X 2006 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese) [张银霞 2006 博士学位论文(大连: 大连理工大学)]

    [25]

    Langford J I, Wilson A J C 1978 J. Appl. Cryst. 11 102

  • [1] 袁用开, 陈茜, 高廷红, 梁永超, 谢泉, 田泽安, 郑权, 陆飞. GaAs晶体在不同应变下生长过程的分子动力学模拟. 物理学报, 2023, 72(13): 136801. doi: 10.7498/aps.72.20221860
    [2] 王娜, 许会芳, 杨秋云, 章毛连, 林子敬. 单层CrI3电荷输运性质和光学性质应变调控的第一性原理研究. 物理学报, 2022, 71(20): 207102. doi: 10.7498/aps.71.20221019
    [3] 潘凤春, 林雪玲, 王旭明. 应变对(Ga, Mo)Sb磁学和光学性质影响的理论研究. 物理学报, 2022, 71(9): 096103. doi: 10.7498/aps.71.20212316
    [4] 卢群林, 杨伟煌, 熊飞兵, 林海峰, 庄芹芹. 双轴向应变对单层GeSe气体传感特性的影响. 物理学报, 2020, 69(19): 196801. doi: 10.7498/aps.69.20200539
    [5] 王鑫, 李桦, 董正超, 仲崇贵. 二维应变作用下超导薄膜LiFeAs的磁性和电子性质. 物理学报, 2019, 68(2): 027401. doi: 10.7498/aps.68.20180957
    [6] 肖美霞, 梁尤平, 陈玉琴, 刘萌. 应变对两层半氢化氮化镓薄膜电磁学性质的调控机理研究. 物理学报, 2016, 65(2): 023101. doi: 10.7498/aps.65.023101
    [7] 邓春雨, 侯尚林, 雷景丽, 王道斌, 李晓晓. 单模光纤中用声波导布里渊散射同时测量温度和应变. 物理学报, 2016, 65(24): 240702. doi: 10.7498/aps.65.240702
    [8] 白敏, 宣荣喜, 宋建军, 张鹤鸣, 胡辉勇, 舒斌. 压应变Ge/(001)Si1-xGex空穴散射与迁移率模型. 物理学报, 2015, 64(3): 038501. doi: 10.7498/aps.64.038501
    [9] 王玉珍, 马颖, 周益春. 外延压应变对BaTiO3铁电体抗辐射性能影响的分子动力学研究. 物理学报, 2014, 63(24): 246101. doi: 10.7498/aps.63.246101
    [10] 王疆靖, 邵瑞文, 邓青松, 郑坤. 应变加载下Si纳米线电输运性能的原位电子显微学研究. 物理学报, 2014, 63(11): 117303. doi: 10.7498/aps.63.117303
    [11] 谢剑锋, 曹觉先. 六角氮化硼片能带结构的应变调控. 物理学报, 2013, 62(1): 017302. doi: 10.7498/aps.62.017302
    [12] 吴木生, 徐波, 刘刚, 欧阳楚英. 应变对单层二硫化钼能带影响的第一性原理研究. 物理学报, 2012, 61(22): 227102. doi: 10.7498/aps.61.227102
    [13] 任晓栋, 刘建军, 张文清. 应变对层状锰系锂离子电池正极材料输出电压的影响. 物理学报, 2012, 61(18): 183101. doi: 10.7498/aps.61.183101
    [14] 黄诗浩, 李成, 陈城钊, 郑元宇, 赖虹凯, 陈松岩. N型掺杂应变Ge发光性质. 物理学报, 2012, 61(3): 036202. doi: 10.7498/aps.61.036202
    [15] 顾芳, 张加宏, 杨丽娟, 顾斌. 应变石墨烯纳米带谐振特性的分子动力学研究. 物理学报, 2011, 60(5): 056103. doi: 10.7498/aps.60.056103
    [16] 姚文杰, 俞重远, 刘玉敏, 芦鹏飞. 基于连续弹性理论分析量子线线宽对应变分布和带隙的影响. 物理学报, 2009, 58(2): 1185-1189. doi: 10.7498/aps.58.1185
    [17] 崔玉亭, 游素琴, 武亮, 马勇, 陈京兰, 潘复生, 吴光恒. Ni53.2Mn22.6Ga24.2单晶的两步热弹性马氏体相变及其应力应变特性. 物理学报, 2009, 58(12): 8596-8601. doi: 10.7498/aps.58.8596
    [18] 姚 飞, 薛春来, 成步文, 王启明. 重掺B对应变SiGe材料能带结构的影响. 物理学报, 2007, 56(11): 6654-6659. doi: 10.7498/aps.56.6654
    [19] 张开骁, 陈敦军, 沈 波, 陶亚奇, 吴小山, 徐 金, 张 荣, 郑有炓. 表面钝化前后Al0.22Ga0.78N/GaN异质结势垒层应变的高温特性. 物理学报, 2006, 55(3): 1402-1406. doi: 10.7498/aps.55.1402
    [20] 王焕友, 曹晓平, 蒋亦民, 刘 佑. 静止颗粒体的应变与弹性. 物理学报, 2005, 54(6): 2784-2790. doi: 10.7498/aps.54.2784
计量
  • 文章访问数:  5564
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-15
  • 修回日期:  2017-11-16
  • 刊出日期:  2018-02-05

/

返回文章
返回