搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

温度对小角度对称倾斜晶界位错运动影响的晶体相场模拟

祁科武 赵宇宏 郭慧俊 田晓林 侯华

引用本文:
Citation:

温度对小角度对称倾斜晶界位错运动影响的晶体相场模拟

祁科武, 赵宇宏, 郭慧俊, 田晓林, 侯华

Phase field crystal simulation of the effect of temperature on low-angle symmetric tilt grain boundary dislocation motion

Qi Ke-Wu, Zhao Yu-Hong, Guo Hui-Jun, Tian Xiao-Lin, Hou Hua
PDF
HTML
导出引用
  • 采用晶体相场法模拟了纳米尺度下小角度对称倾斜晶界的结构和位错运动, 针对弛豫过程和附加外应力过程, 观察了晶界上位错运动的位置变化和体系自由能变化, 分析了温度对小角度对称倾斜晶界的结构和晶界上位错运动的影响规律. 研究表明, 弛豫过程中体系温度越低, 体系自由能下降速率越大, 原子规则排列速率增加, 体系自由能达到稳定状态所需的时间越短, 晶界达到稳定状态时位错对排列愈发整齐, 呈现直线规则排列. 外应力作用下, 温度越低, 晶体位错对首次相遇时间越长, 晶体形成单个晶粒时间越长, 位错对首次相遇到晶体内位错对完全消失过程时间越长; 随着温度的降低, 体系自由能出现多段上升下降, 位错对反应也愈加复杂, 趋向于逐对抵消.
    For crystal materials, the grain boundary structure is complex, which is usually the place in which stress concentration and impurity accumulate. Grain boundary structure and movement have a great influence on the macroscopic properties of crystal materials, therefore, it is of great significance to study the microstructure of grain boundary. With the phase filed crystal approach, the structure of low-angle symmetric tilt grain boundary and dislocation motion at nanoscale are studied. The low-angle symmetric tilt grain boundary structure can be described by a dislocation model, in which the grain boundary can be regarded as consisting of a series of edge dislocations at a certain distance. For a relaxation process and applied stress process, the position change of dislocation motion at grain boundaries and the change of free energy density of the system are observed. Furthermore, we also analyze the influence of temperature on the grain boundary structure and the dislocation motion. In the relaxation process, the free energy of the crystal system is higher under high temperature conditions. The results show that the motion of dislocation pairs in the grains can consume the internal energy and release the distortion energy stored at the grain boundary, and thus making the system more stable and the energy reach the lowest value earlier. Simulation results show that the lower the temperature of the system, the faster the free energy density decreases, the faster the regular arrangement rate of atoms increases, the shorter the time required for the free energy density to reach a stable state becomes. And when the grain boundary reaches a steady state, the arrangement of the dislocations becomes more and more regular and arranges in a straight line. For an applied stress process, with the decrease of temperature, the time required for the first encounter of dislocation pairs and the time required for the formation of single crystal become longer, and it takes more time for the first encounter of dislocation pairs in crystals to disappear completely. Further studies also show that with the decrease of temperature, the free energy density exhibits a multi-stage ascending and descending process. The rising process of energy curve corresponds to the stage of dislocation climbing along the grain boundary, and the decline process corresponds to the stage of dislocation decomposition and encounter annihilation. At the same time, the dislocation pairs’ reaction becomes more complex. Finally, the dislocations annihilate with each other.
      通信作者: 赵宇宏, zhaoyuhong@nuc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51774254, 51774253, 51701187, U1610123, 51674226, 51574207, 51574206)和山西省科技重大专项(批准号: MC2016-06)资助的课题.
      Corresponding author: Zhao Yu-Hong, zhaoyuhong@nuc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51774254, 51774253, 51701187, U1610123, 51674226, 51574207, 51574206) and the Science and Technology Major Project of Shanxi Province, China (Grant No. MC2016-06).
    [1]

    Paul S K 2018 Comput. Mater. Sci. 150 24Google Scholar

    [2]

    Bobylev S V, Gutkin M Y, Ovid'Ko I A 2006 Phys. Solid State 48 1495Google Scholar

    [3]

    Caturla M, Nieh T G, Stolken J S 2004 Appl. Phys. Lett. 84 598Google Scholar

    [4]

    Peter S, Mikko H, Nikolas P 2009 Phys. Rev. E 80 046107Google Scholar

    [5]

    Li X H, Wen X, Zhao H H, Ma Z Q, Yu L M, Li C, Liu C X, Guo Q Y, Liu Y C 2019 J. Alloys Compd. 779 175Google Scholar

    [6]

    Chen Y Y, Hu Z P, Xu Y F, Wang J Y, Schützendübe P, Huang Y, Liu Y C, Wang Z M 2019 J. Mater. Sci. Technol. 35 512Google Scholar

    [7]

    Elder K R, Katakowski M, Haataja M, Grant M 2002 Phys. Rev. Lett. 88 245701Google Scholar

    [8]

    Elder K R, Grant M 2004 Phys. Rev. E 70 051605Google Scholar

    [9]

    Elder K R, Provatas N, Berry J, Stefanovic P 2007 Phys. Rev. B 75 064107Google Scholar

    [10]

    Wang J, Yu L M, Huang Y, Li H J , Liu Y C 2019 Comput. Mater. Sci. 160 105Google Scholar

    [11]

    Qi Y, Krajewski P E 2007 Acta Mater. 55 1555Google Scholar

    [12]

    郑晓娟, 赵宇宏, 侯华, 靳玉春, 马庆爽, 田晋忠 2017 中国有色金属学报 27 2098

    Zheng X J, Zhao Y H, Hou H, Jin Y C, Ma Q S, Tian J Z 2017 Chin. J. Nonferrous Met. 27 2098

    [13]

    Fan D, Chen L Q 1997 Acta Mater. 45 611Google Scholar

    [14]

    孙远洋, 赵宇宏, 侯华, 郑晓娟, 郭慧俊 2018 稀有金属材料与工程 47 3000

    Sun Y Y, Zhao Y H, Hou H, Zheng X J, Guo H J 2018 Rare Metal. Mater. Eng. 47 3000

    [15]

    康永生, 赵宇宏, 侯华, 靳玉春, 陈利文 2016 物理学报 65 188102Google Scholar

    Kang Y S, Zhao Y H, Hou H, Jin Y C, Chen L W 2016 Acta Phys. Sin. 65 188102Google Scholar

    [16]

    王锟, 赵宇宏, 杨东然, 侯华, 王欣然, 田园 2015 稀有金属材料与工程 44 939

    Wang K, Zhao Y H, Yang D R, Hou H, Wang X R, Tian Y 2015 Rare Metal. Mater. Eng. 44 939

    [17]

    赵宇宏 2010 材料相变过程微观组织模拟 (北京: 国防工业出版社) 第139页

    Zhao Y H 2010 Simulation for the Materials Microstructure Evolution in Phase Transformation Process (Beijing: National Defense Industry Press) p139 (in Chinese)

    [18]

    孙远洋, 赵宇宏, 侯华, 靳玉春, 郑晓娟 2018 中国有色金属学报 28 71

    Sun Y Y, Zhao Y H, Hou H, Jin Y C, Zheng X J 2018 Chin. J. Nonferrous Metal. 28 71

    [19]

    田晓林, 赵宇宏, 田晋忠, 侯华 2018 物理学报 67 230201Google Scholar

    Tian X L, Zhao Y H, Tian J Z, Hou H 2018 Acta Phys. Sin. 67 230201Google Scholar

    [20]

    Zhao Y H, Tian X L, Zhao B J, Sun Y Y, Guo H J, Dong M Y, Liu H, Wang X J, Guo Z H, Umar A, Hou H 2018 Sci. Adv. Mater. 10 1793Google Scholar

    [21]

    Fallah V, Stolle J, Ofori-Opoku N, Esmaeili S, Provatas N 2012 Phys. Rev. B 86 3209

    [22]

    Fallah V, Ofori-Opoku N, Stolle J, Provatas N, Esmaeili S 2013 Acta Mater. 61 3653Google Scholar

    [23]

    Wu K A, Voorhees P W 2012 Acta Mater. 60 407Google Scholar

    [24]

    Yamanaka A, McReynolds K, Voorhees P W 2017 Acta Mater. 133 160Google Scholar

    [25]

    Olmsted D L, Buta D, Adland A, Foiles S M, Asta M, Karma A 2011 Phys. Rev. Lett. 106 046101Google Scholar

    [26]

    高英俊, 秦河林, 周文权, 邓芊芊, 罗志荣, 黄创高 2015 物理学报 64 106105Google Scholar

    Gao Y J, Qin H L, Zhou W Q, Deng Q Q, Luo Z R, Huang C G 2015 Acta Phys. Sin. 64 106105Google Scholar

    [27]

    Berry J, Elder K R, Grant M 2008 Phys. Rev. B 77 224114Google Scholar

    [28]

    Chan V W L, Pisutha-Arnond N, Thornton K 2017 Comput. Mater. Sci. 135 205Google Scholar

    [29]

    Asadi E, Zaeem M A 2015 JOM 67 186Google Scholar

    [30]

    Tang S, Wang Z J, Guo Y L, Wang J C, Yu Y M, Zhou Y H 2012 Acta Mater. 60 5501Google Scholar

    [31]

    Berry J, Grant M 2014 Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 89 062303Google Scholar

    [32]

    Zhang W, Mi J 2016 IOP Conf. Ser.: Mater. Sci. Eng. 117 012056Google Scholar

    [33]

    Hu S, Chen Z, Xi W, Peng Y Y 2017 J. Mater. Sci. 52 5641Google Scholar

    [34]

    Hu S, Xi W, Chen Z, Wang S, Zhang T H 2017 Comput. Mater. Sci. 132 125Google Scholar

    [35]

    Hu S, Chen Z, Peng Y Y, Liu Y J, Guo L Y 2016 Comput. Mater. Sci. 121 143Google Scholar

    [36]

    谷季唯, 王锦程, 王志军, 李俊杰, 郭灿, 唐赛 2017 物理学报 66 216101Google Scholar

    Gu J W, Wang J C, Wang Z J, Li J J, Guo C, Tang S 2017 Acta Phys. Sin. 66 216101Google Scholar

    [37]

    Hirouchi T, Takaki T, Tomita Y 2010 Int. J. Mech. Sci. 52 309Google Scholar

    [38]

    Guo H J, Zhao Y H, Sun Y Y, Tian J Z, Hou H, Qi K W, Tian X L 2019 Superlattices Microstruct. 129 163Google Scholar

    [39]

    Zhao Y H, Deng S J, Liu H, Zhang J X, Guo Z H, Hou H 2018 Comput. Mater. Sci. 154 365Google Scholar

    [40]

    Wen Z Q, Hou H, Tian J Z, Zhao Y H, Li H J, Han P D 2018 Intermetallics 92 15Google Scholar

    [41]

    Wen Z Q, Zhao Y H, Hou H, Wang B, Han P D 2017 Mater. Des. 114 398Google Scholar

    [42]

    Zhao Y H, Qi L, Jin Y C, Wang K, Tian J Z, Han P D 2015 J. Alloys Compd. 647 1104Google Scholar

    [43]

    Tian J Z, Zhao Y H, Hou H, Han P D 2017 Solid State Commun. 268 44Google Scholar

    [44]

    Hirouchi T, Takaki T, Tomita Y 2009 Comput. Mater. Sci. 44 1192Google Scholar

  • 图 1  单模近似下的二维相图(图中阴影部分表示两相区)

    Fig. 1.  Two-dimensional phase diagram as calculated in a one-mode approximation (hatched areas in the figure correspond to coexistence regions).

    图 2  r = –0.25条件下弛豫过程模拟 (a) n = 300; (b) n = 800; (c) n = 15000; (d) n = 29450

    Fig. 2.  Simulation of relaxation process under the conditions of temperature r = –0.25 at (a) n = 300, (b) n = 800, (c) n = 15000, (d) n = 29450.

    图 3  两晶粒形成夹角为2.8°的位向角

    Fig. 3.  Snapshot of two grains with an orientation angle of 2.8°.

    图 4  弛豫过程29500步时不同温度条件下晶界位错模拟图 (a) r = –0.23; (b) r = –0.25; (c) r = –0.28; (d) r = –0.30

    Fig. 4.  Simulation of grain boundary dislocation under different temperature conditions at 29500 steps of relaxation process: (a) r = –0.23; (b) r = –0.25; (c) r = –0.28; (d) r = –0.30

    图 5  温度对弛豫过程体系自由能变化的影响

    Fig. 5.  Effect of temperature on the change of free energy of relaxation process system.

    图 6  应力作用下r = –0.23时晶界位错运动模拟图 (a) n = 5500; (b) n = 10900; (c) n = 11350; (d) n = 13350; (e) n = 13850; (f) n = 24450

    Fig. 6.  Simulation diagram of grain boundary dislocation motion under stress with r = –0.23: (a) n = 5500; (b) n = 10900; (c) n = 11350; (d) n = 13350; (e) n = 13850; (f) n = 24450.

    图 7  应力作用下r = –0.25时晶界位错运动模拟图 (a) n = 11100; (b) n = 11550; (c) n = 13600; (d) n = 13850; (e) n = 14100; (f) n = 25150

    Fig. 7.  Simulation diagram of grain boundary dislocation motion under stress with r = –0.25: (a) n = 11100; (b) n = 11550; (c) n = 13600; (d) n = 13850; (e) n = 14100; (f) n = 25150.

    图 9  应力作用下r = –0.30时晶界位错运动模拟图 (a) n = 11300; (b) n = 12100; (c) n = 12500; (d) n = 39550; (e) n = 40100; (f) n = 76500

    Fig. 9.  Simulation diagram of grain boundary dislocation motion under stress with r = –0.30: (a) n = 11300; (b) n = 12100; (c) n = 12500; (d) n = 39550; (e) n = 40100; (f) n = 76500.

    图 8  应力作用下r = –0.28时晶界位错运动模拟图 (a) n = 11800; (b) n = 12050; (c) n = 13800; (d) n = 29050; (e) n = 33450; (f) n = 33700

    Fig. 8.  Simulation diagram of grain boundary dislocation motion under stress with r = –0.28: (a) n = 11800; (b) n = 12050; (c) n = 13800; (d) n = 29050; (e) n = 33450; (f) n = 33700.

    图 10  11200步时不同温度条件下的模拟图 (a) r = –0.23; (b) r = –0.25; (c) r = –0.28; (d) r = –0.30

    Fig. 10.  Simulation diagram under different temperature conditions at n = 11200: (a) r = –0.23; (b) r = –0.25; (c) r = –0.28; (d) r = –0.30.

    图 11  不同温度下体系自由能曲线图 (a) r = –0.23; (b) r = –0.25; (c) r = –0.28; (d) r = –0.30

    Fig. 11.  Free energy curve of system under different degrees of temperature: (a) r = –0.23; (b) r = –0.25; (c) r = –0.28; (d) r = –0.30

    表 1  模拟所采用的参数

    Table 1.  Parameters used in the simulation.

    方案初始原子密度ρ0位向差θ温度相关参量r
    A0.2852.8°–0.23
    B0.2852.8°–0.25
    C0.2852.8°–0.28
    D0.2852.8°–0.30
    下载: 导出CSV
  • [1]

    Paul S K 2018 Comput. Mater. Sci. 150 24Google Scholar

    [2]

    Bobylev S V, Gutkin M Y, Ovid'Ko I A 2006 Phys. Solid State 48 1495Google Scholar

    [3]

    Caturla M, Nieh T G, Stolken J S 2004 Appl. Phys. Lett. 84 598Google Scholar

    [4]

    Peter S, Mikko H, Nikolas P 2009 Phys. Rev. E 80 046107Google Scholar

    [5]

    Li X H, Wen X, Zhao H H, Ma Z Q, Yu L M, Li C, Liu C X, Guo Q Y, Liu Y C 2019 J. Alloys Compd. 779 175Google Scholar

    [6]

    Chen Y Y, Hu Z P, Xu Y F, Wang J Y, Schützendübe P, Huang Y, Liu Y C, Wang Z M 2019 J. Mater. Sci. Technol. 35 512Google Scholar

    [7]

    Elder K R, Katakowski M, Haataja M, Grant M 2002 Phys. Rev. Lett. 88 245701Google Scholar

    [8]

    Elder K R, Grant M 2004 Phys. Rev. E 70 051605Google Scholar

    [9]

    Elder K R, Provatas N, Berry J, Stefanovic P 2007 Phys. Rev. B 75 064107Google Scholar

    [10]

    Wang J, Yu L M, Huang Y, Li H J , Liu Y C 2019 Comput. Mater. Sci. 160 105Google Scholar

    [11]

    Qi Y, Krajewski P E 2007 Acta Mater. 55 1555Google Scholar

    [12]

    郑晓娟, 赵宇宏, 侯华, 靳玉春, 马庆爽, 田晋忠 2017 中国有色金属学报 27 2098

    Zheng X J, Zhao Y H, Hou H, Jin Y C, Ma Q S, Tian J Z 2017 Chin. J. Nonferrous Met. 27 2098

    [13]

    Fan D, Chen L Q 1997 Acta Mater. 45 611Google Scholar

    [14]

    孙远洋, 赵宇宏, 侯华, 郑晓娟, 郭慧俊 2018 稀有金属材料与工程 47 3000

    Sun Y Y, Zhao Y H, Hou H, Zheng X J, Guo H J 2018 Rare Metal. Mater. Eng. 47 3000

    [15]

    康永生, 赵宇宏, 侯华, 靳玉春, 陈利文 2016 物理学报 65 188102Google Scholar

    Kang Y S, Zhao Y H, Hou H, Jin Y C, Chen L W 2016 Acta Phys. Sin. 65 188102Google Scholar

    [16]

    王锟, 赵宇宏, 杨东然, 侯华, 王欣然, 田园 2015 稀有金属材料与工程 44 939

    Wang K, Zhao Y H, Yang D R, Hou H, Wang X R, Tian Y 2015 Rare Metal. Mater. Eng. 44 939

    [17]

    赵宇宏 2010 材料相变过程微观组织模拟 (北京: 国防工业出版社) 第139页

    Zhao Y H 2010 Simulation for the Materials Microstructure Evolution in Phase Transformation Process (Beijing: National Defense Industry Press) p139 (in Chinese)

    [18]

    孙远洋, 赵宇宏, 侯华, 靳玉春, 郑晓娟 2018 中国有色金属学报 28 71

    Sun Y Y, Zhao Y H, Hou H, Jin Y C, Zheng X J 2018 Chin. J. Nonferrous Metal. 28 71

    [19]

    田晓林, 赵宇宏, 田晋忠, 侯华 2018 物理学报 67 230201Google Scholar

    Tian X L, Zhao Y H, Tian J Z, Hou H 2018 Acta Phys. Sin. 67 230201Google Scholar

    [20]

    Zhao Y H, Tian X L, Zhao B J, Sun Y Y, Guo H J, Dong M Y, Liu H, Wang X J, Guo Z H, Umar A, Hou H 2018 Sci. Adv. Mater. 10 1793Google Scholar

    [21]

    Fallah V, Stolle J, Ofori-Opoku N, Esmaeili S, Provatas N 2012 Phys. Rev. B 86 3209

    [22]

    Fallah V, Ofori-Opoku N, Stolle J, Provatas N, Esmaeili S 2013 Acta Mater. 61 3653Google Scholar

    [23]

    Wu K A, Voorhees P W 2012 Acta Mater. 60 407Google Scholar

    [24]

    Yamanaka A, McReynolds K, Voorhees P W 2017 Acta Mater. 133 160Google Scholar

    [25]

    Olmsted D L, Buta D, Adland A, Foiles S M, Asta M, Karma A 2011 Phys. Rev. Lett. 106 046101Google Scholar

    [26]

    高英俊, 秦河林, 周文权, 邓芊芊, 罗志荣, 黄创高 2015 物理学报 64 106105Google Scholar

    Gao Y J, Qin H L, Zhou W Q, Deng Q Q, Luo Z R, Huang C G 2015 Acta Phys. Sin. 64 106105Google Scholar

    [27]

    Berry J, Elder K R, Grant M 2008 Phys. Rev. B 77 224114Google Scholar

    [28]

    Chan V W L, Pisutha-Arnond N, Thornton K 2017 Comput. Mater. Sci. 135 205Google Scholar

    [29]

    Asadi E, Zaeem M A 2015 JOM 67 186Google Scholar

    [30]

    Tang S, Wang Z J, Guo Y L, Wang J C, Yu Y M, Zhou Y H 2012 Acta Mater. 60 5501Google Scholar

    [31]

    Berry J, Grant M 2014 Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 89 062303Google Scholar

    [32]

    Zhang W, Mi J 2016 IOP Conf. Ser.: Mater. Sci. Eng. 117 012056Google Scholar

    [33]

    Hu S, Chen Z, Xi W, Peng Y Y 2017 J. Mater. Sci. 52 5641Google Scholar

    [34]

    Hu S, Xi W, Chen Z, Wang S, Zhang T H 2017 Comput. Mater. Sci. 132 125Google Scholar

    [35]

    Hu S, Chen Z, Peng Y Y, Liu Y J, Guo L Y 2016 Comput. Mater. Sci. 121 143Google Scholar

    [36]

    谷季唯, 王锦程, 王志军, 李俊杰, 郭灿, 唐赛 2017 物理学报 66 216101Google Scholar

    Gu J W, Wang J C, Wang Z J, Li J J, Guo C, Tang S 2017 Acta Phys. Sin. 66 216101Google Scholar

    [37]

    Hirouchi T, Takaki T, Tomita Y 2010 Int. J. Mech. Sci. 52 309Google Scholar

    [38]

    Guo H J, Zhao Y H, Sun Y Y, Tian J Z, Hou H, Qi K W, Tian X L 2019 Superlattices Microstruct. 129 163Google Scholar

    [39]

    Zhao Y H, Deng S J, Liu H, Zhang J X, Guo Z H, Hou H 2018 Comput. Mater. Sci. 154 365Google Scholar

    [40]

    Wen Z Q, Hou H, Tian J Z, Zhao Y H, Li H J, Han P D 2018 Intermetallics 92 15Google Scholar

    [41]

    Wen Z Q, Zhao Y H, Hou H, Wang B, Han P D 2017 Mater. Des. 114 398Google Scholar

    [42]

    Zhao Y H, Qi L, Jin Y C, Wang K, Tian J Z, Han P D 2015 J. Alloys Compd. 647 1104Google Scholar

    [43]

    Tian J Z, Zhao Y H, Hou H, Han P D 2017 Solid State Commun. 268 44Google Scholar

    [44]

    Hirouchi T, Takaki T, Tomita Y 2009 Comput. Mater. Sci. 44 1192Google Scholar

  • [1] 高丰, 李欢庆, 宋卓, 赵宇宏. 三模晶体相场法研究应变诱导石墨烯晶界位错演化. 物理学报, 2024, 73(24): . doi: 10.7498/aps.73.20241368
    [2] 陈伟龙, 郭榕榕, 仝钰申, 刘莉莉, 周圣岚, 林金海. 亚禁带光照对CdZnTe晶体中晶界电场分布的影响. 物理学报, 2022, 71(22): 226101. doi: 10.7498/aps.71.20220896
    [3] 郭灿, 赵玉平, 邓英远, 张忠明, 徐春杰. 运动晶界与调幅分解相互作用过程的相场法研究. 物理学报, 2022, 71(7): 078101. doi: 10.7498/aps.71.20211973
    [4] 张博佳, 安敏荣, 胡腾, 韩腊. 镁中位错和非晶作用机制的分子动力学模拟. 物理学报, 2022, 71(14): 143101. doi: 10.7498/aps.71.20212318
    [5] 夏文强, 赵彦, 刘振智, 鲁晓刚. 应变诱发四方相小角度对称倾侧晶界位错反应的晶体相场模拟. 物理学报, 2022, 71(9): 096102. doi: 10.7498/aps.71.20212278
    [6] 李帅瑶, 张大源, 高强, 李博, 何勇, 王智化. 基于飞秒激光成丝测量燃烧场温度. 物理学报, 2020, 69(23): 234207. doi: 10.7498/aps.69.20200939
    [7] 祁科武, 赵宇宏, 田晓林, 彭敦维, 孙远洋, 侯华. 取向角对小角度非对称倾斜晶界位错运动影响的晶体相场模拟. 物理学报, 2020, 69(14): 140504. doi: 10.7498/aps.69.20200133
    [8] 何菊生, 张萌, 邹继军, 潘华清, 齐维靖, 李平. 基于三轴X射线衍射方法的n-GaN位错密度的测试条件分析. 物理学报, 2017, 66(21): 216102. doi: 10.7498/aps.66.216102
    [9] 郭刘洋, 陈铮, 龙建, 杨涛. 晶体相场法研究应力状态及晶体取向对微裂纹尖端扩展行为的影响. 物理学报, 2015, 64(17): 178102. doi: 10.7498/aps.64.178102
    [10] 杨剑群, 马国亮, 李兴冀, 刘超铭, 刘海. 温度和应变速率耦合作用下纳米晶Ni压缩行为研究. 物理学报, 2015, 64(13): 137103. doi: 10.7498/aps.64.137103
    [11] 高英俊, 秦河林, 周文权, 邓芊芊, 罗志荣, 黄创高. 高温应变下的晶界湮没机理的晶体相场法研究. 物理学报, 2015, 64(10): 106105. doi: 10.7498/aps.64.106105
    [12] 邵宇飞, 杨鑫, 李久会, 赵星. Cu刃型扩展位错附近局部应变场的原子模拟研究. 物理学报, 2014, 63(7): 076103. doi: 10.7498/aps.63.076103
    [13] 鲁娜, 王永欣, 陈铮. 非对称倾侧亚晶界的晶体相场法研究. 物理学报, 2014, 63(18): 180508. doi: 10.7498/aps.63.180508
    [14] 高英俊, 罗志荣, 黄创高, 卢强华, 林葵. 晶体相场方法研究二维六角相向正方相结构转变. 物理学报, 2013, 62(5): 050507. doi: 10.7498/aps.62.050507
    [15] 赵宇龙, 陈铮, 龙建, 杨涛. 晶体相场法模拟纳米晶材料反霍尔-佩奇效应的微观变形机理. 物理学报, 2013, 62(11): 118102. doi: 10.7498/aps.62.118102
    [16] 龙建, 王诏玉, 赵宇龙, 龙清华, 杨涛, 陈铮. 不同对称性下晶界结构演化及微观机理的晶体相场法研究. 物理学报, 2013, 62(21): 218101. doi: 10.7498/aps.62.218101
    [17] 李联和, 刘官厅. 一维六方准晶中螺形位错与楔形裂纹的相互作用. 物理学报, 2012, 61(8): 086103. doi: 10.7498/aps.61.086103
    [18] 陈成, 陈铮, 张静, 杨涛. 晶体相场法模拟异质外延过程中界面形态演化与晶向倾侧. 物理学报, 2012, 61(10): 108103. doi: 10.7498/aps.61.108103
    [19] 李岩, 傅海威, 邵敏, 李晓莉. 石墨点阵柱状光子晶体共振腔的温度特性. 物理学报, 2011, 60(7): 074219. doi: 10.7498/aps.60.074219
    [20] 方步青, 卢果, 张广财, 许爱国, 李英骏. 铜晶体中类层错四面体的结构及其演化. 物理学报, 2009, 58(7): 4862-4871. doi: 10.7498/aps.58.4862
计量
  • 文章访问数:  10720
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-09
  • 修回日期:  2019-05-28
  • 上网日期:  2019-09-01
  • 刊出日期:  2019-09-05

/

返回文章
返回