搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

晶体相场法研究应力状态及晶体取向对微裂纹尖端扩展行为的影响

郭刘洋 陈铮 龙建 杨涛

引用本文:
Citation:

晶体相场法研究应力状态及晶体取向对微裂纹尖端扩展行为的影响

郭刘洋, 陈铮, 龙建, 杨涛

Study on the effect of stress state and crystal orientation on micro-crack tip propagation behavior in phase field crystal method

Guo Liu-Yang, Chen Zheng, Long Jian, Yang Tao
PDF
导出引用
  • 采用晶体相场模拟研究了单向拉伸作用下初始应力状态、晶体取向角度对单晶材料内部微裂纹尖端扩展行为的影响, 以(111)晶面上的预制中心裂纹为研究对象探讨了微裂纹尖端扩展行为的纳观机理, 结果表明: 微裂纹的扩展行为主要发生在11>(111)滑移系上, 扩展行为与扩展方向与材料所处的初始应力状态及晶体取向紧密相关. 预拉伸应力状态将首先诱发微裂纹尖端生成滑移位错, 进而导致晶面解理而实现微裂纹尖端沿[011]晶向扩展, 扩展到一定程度后由于位错塞积, 应力集中, 使裂纹扩展方向沿另一滑移方向[101], 并形成锯齿形边缘; 预剪切应力状态下, 微裂纹尖端首先在[101]晶向解理扩展, 并诱发位错产生, 形成空洞聚集型长大的二次裂纹, 形成了明显的剪切带; 预偏变形状态下微裂纹尖端则直接以晶面解理形式[101]在上进行扩展, 直至断裂失效; 微裂纹尖端扩展行为随晶体取向不同而不同, 较小的取向角度会在裂纹尖端形成滑移位错, 诱发空位而形成二次裂纹, 而较大的取向角下的裂纹尖端则以直接解理扩展为主, 扩展方向与拉伸方向几近垂直.
    A nanometer scale mechanism for micro crack propagation under uniaxial tension in single crystals is investigated using phase field crystal (PFC) simulation. The uniaxial tensile loading is strain controlled. And three initial typical stresses of pre-existing center crack in (111) crystal plane of face centered cubic structure are chosen to study the effects of initial stress state on micro-crack propagation. Moreover, the influences of different crystal orientations, when the crystal suffers from uniaxial tension, are also investigated. Due to the influence of time scale and length scale in the PFC method, the motion of dislocations, vacancies, shear band and twinning structure should be observed and described during the propagation process of micro cracks. In addition, the free energy curves of different processes are drawn and discussed in order to explain the different behaviors of the crystal in the propagation of cracks. Simulation results show that the propagation behavior of micro cracks can be closely associated with the initial stress state. It is found that the propagation behavior mainly occurs in the 11>(111) slip system. Besides, the crystal orientation has a significant effect on the mechanism of activation and evolution. In the pre-stretching system, slip dislocation is induced near the micro-crack tip, and then its slide in [011] direction will cause the cleavage of a certain crystal plane, and promote the micro cracks to extend. However, to a certain level, the propagating direction of the micro-crack tip will turn to another slip direction [101]. As a result, zigzag edge appears. By contrast, in the pre-shear system, the tip of the micro crack propagates in a cleavage mode, and results in the appearance of slip dislocation [101] near the micro-crack tip. Afterwards, the motion of slip dislocation promotes the production of vacancies. And owing to the aggregation and combination of vacancies, secondary cracks form and propagate in the process that follows. At the same time, in a pre-deviatoric system, the micro crack propagates forward with direct cleavage of [101] slip direction near the micro-crack tip until the single crystal sample fractures. Furthermore, no slip dislocation appears during the whole process. The mechanism of micro-crack tip propagating behavior varies with crystal orientation. When the crystal orientation angle is lower, the micro-crack tip prefers to produce slip dislocation around it, and the following dislocation slide will induce vacancies, then a secondary crack also forms because of the aggregation and combination of vacancies. On the other hand, when the aggregation degree is higher, the micro-crack tip is inclined to directly propagate in a cleavage mode, and its propagating direction is nearly perpendicular to the stretching direction.
      通信作者: 陈铮, chenzh@nwpu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51474176和51274167)资助的课题.
      Corresponding author: Chen Zheng, chenzh@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51474176, 51274167).
    [1]

    Zhang J X, Ghosh S 2013 J Mech. Phys. Solids. 61 1670

    [2]

    Cao L X, Wang C Y 2006 Chin. Phys. 15 2092

    [3]

    Ma L, Xiao S, Deng H, Hu W 2014 Int. J. Fatigue. 68 253

    [4]

    Li D, Meng F Y, Ma X Q, Qiao L J, Chu W Y 2011 J. Mater. Sci. Technol. 27 1025

    [5]

    Guo Wu R, Tie G T 2014 Chin. Phys. B 23 118704

    [6]

    Cadini F, Zio E, Avram D 2009 Probabilist. Eng. Mech. 24 367

    [7]

    Ganchenkova M G, Borodin V A 2004 Mater. Sci. Eng. A-struct. 387 372

    [8]

    Arafin M A, Szpunar J A 2009 Corros. Sci. 51 119

    [9]

    Mergheim J 2009 Int. J. Numer. Meth. Eng. 80 269

    [10]

    Loehnert S, Prange C, Wriggers P 2012 Int. J. Fracture. 178 147

    [11]

    Colombo D, Massin P 2011 Comput. Method. Appl. M. 200 2160

    [12]

    Elder K R, Grant M 2004 Phys. Rev. E. 70 51605

    [13]

    Spatschek R, Brener E, Karma A 2011 Philos. Mag. 91 75

    [14]

    Song Y C, Soh A K, Ni Y 2007 J. Phys. D: Appl. Phys. 40 1175

    [15]

    Abdollahi A, Arias I 2015 Arch. Comput. Method. E. 22 153

    [16]

    Humadi H, Ofori-Opoku N, Provatas N, JHoyt J 2013 JOM. 65 1103

    [17]

    Berry J, Grant M, Elder K R 2006 Phys. Rev. E. 73 31609

    [18]

    Haataja M, Provatas N, Stefanovic P 2009 Phys. Rev. E. 80 46107

    [19]

    Zhao Y L, Chen Z, Long J, Yang T 2013 Acta Phys. Sin. 62 118102 (in Chinese) [赵宇龙, 陈铮, 龙建, 杨涛 2013 物理学报 62 118102]

    [20]

    Ren X, Wang J C, Yang Y J, Yang G C 2010 Acta Phys. Sin. 59 3595 (in Chinese) [任秀, 王锦程, 杨玉娟, 杨根仓 2010 物理学报 59 3595]

    [21]

    Tian S G, Xue Y C, Zeng Z, Shu D L, Xie J 2014 Rare. Metal. Mat. Eng. 43 1092 (in Chinese) [田素贵, 薛永超, 曾征, 舒德龙, 谢君 2014 稀有金属材料与工程 43 1092]

    [22]

    Shao Y F, Wang S Q 2010 Acta Phys. Sin. 10 7258 (in Chinese) [邵宇飞, 王绍青 2010 物理学报 10 7258]

    [23]

    Xiao J M, Gu B, Zhang J W, Qiao L J, Chen Q Z 1994 Acta Metall. Sin. 30 362 (in Chinese) [肖纪美,谷飙,张静武,乔利杰,陈奇志 1994 金属学报 30 362]

    [24]

    Li J X, Chu W Y, Gao K W, Qiao L J 2003 Acta Metall. Sin. 39 359 (in Chinese) [李金许, 褚武扬, 高克玮, 乔利杰 2003 金属学报 39 359]

    [25]

    Gao K W, Chen Q Z, Chu W Y, Xiao J M 1994 Sci. China. Ser. A 24 993 (in Chinese) [高克玮, 陈奇志, 褚武扬, 肖纪美 1994 中国科学(A辑) 24 993]

    [26]

    Tan Q 1991 Acta Metall. Sin. 27 21 (in Chinese) [谭启 1991 金属学报 27 21]

  • [1]

    Zhang J X, Ghosh S 2013 J Mech. Phys. Solids. 61 1670

    [2]

    Cao L X, Wang C Y 2006 Chin. Phys. 15 2092

    [3]

    Ma L, Xiao S, Deng H, Hu W 2014 Int. J. Fatigue. 68 253

    [4]

    Li D, Meng F Y, Ma X Q, Qiao L J, Chu W Y 2011 J. Mater. Sci. Technol. 27 1025

    [5]

    Guo Wu R, Tie G T 2014 Chin. Phys. B 23 118704

    [6]

    Cadini F, Zio E, Avram D 2009 Probabilist. Eng. Mech. 24 367

    [7]

    Ganchenkova M G, Borodin V A 2004 Mater. Sci. Eng. A-struct. 387 372

    [8]

    Arafin M A, Szpunar J A 2009 Corros. Sci. 51 119

    [9]

    Mergheim J 2009 Int. J. Numer. Meth. Eng. 80 269

    [10]

    Loehnert S, Prange C, Wriggers P 2012 Int. J. Fracture. 178 147

    [11]

    Colombo D, Massin P 2011 Comput. Method. Appl. M. 200 2160

    [12]

    Elder K R, Grant M 2004 Phys. Rev. E. 70 51605

    [13]

    Spatschek R, Brener E, Karma A 2011 Philos. Mag. 91 75

    [14]

    Song Y C, Soh A K, Ni Y 2007 J. Phys. D: Appl. Phys. 40 1175

    [15]

    Abdollahi A, Arias I 2015 Arch. Comput. Method. E. 22 153

    [16]

    Humadi H, Ofori-Opoku N, Provatas N, JHoyt J 2013 JOM. 65 1103

    [17]

    Berry J, Grant M, Elder K R 2006 Phys. Rev. E. 73 31609

    [18]

    Haataja M, Provatas N, Stefanovic P 2009 Phys. Rev. E. 80 46107

    [19]

    Zhao Y L, Chen Z, Long J, Yang T 2013 Acta Phys. Sin. 62 118102 (in Chinese) [赵宇龙, 陈铮, 龙建, 杨涛 2013 物理学报 62 118102]

    [20]

    Ren X, Wang J C, Yang Y J, Yang G C 2010 Acta Phys. Sin. 59 3595 (in Chinese) [任秀, 王锦程, 杨玉娟, 杨根仓 2010 物理学报 59 3595]

    [21]

    Tian S G, Xue Y C, Zeng Z, Shu D L, Xie J 2014 Rare. Metal. Mat. Eng. 43 1092 (in Chinese) [田素贵, 薛永超, 曾征, 舒德龙, 谢君 2014 稀有金属材料与工程 43 1092]

    [22]

    Shao Y F, Wang S Q 2010 Acta Phys. Sin. 10 7258 (in Chinese) [邵宇飞, 王绍青 2010 物理学报 10 7258]

    [23]

    Xiao J M, Gu B, Zhang J W, Qiao L J, Chen Q Z 1994 Acta Metall. Sin. 30 362 (in Chinese) [肖纪美,谷飙,张静武,乔利杰,陈奇志 1994 金属学报 30 362]

    [24]

    Li J X, Chu W Y, Gao K W, Qiao L J 2003 Acta Metall. Sin. 39 359 (in Chinese) [李金许, 褚武扬, 高克玮, 乔利杰 2003 金属学报 39 359]

    [25]

    Gao K W, Chen Q Z, Chu W Y, Xiao J M 1994 Sci. China. Ser. A 24 993 (in Chinese) [高克玮, 陈奇志, 褚武扬, 肖纪美 1994 中国科学(A辑) 24 993]

    [26]

    Tan Q 1991 Acta Metall. Sin. 27 21 (in Chinese) [谭启 1991 金属学报 27 21]

  • [1] 姜彦博, 柳文波, 孙志鹏, 喇永孝, 恽迪. 外加应力作用下 UO2 中空洞演化过程的相场模拟. 物理学报, 2022, 71(2): 026103. doi: 10.7498/aps.71.20211440
    [2] 夏文强, 赵彦, 刘振智, 鲁晓刚. 应变诱发四方相小角度对称倾侧晶界位错反应的晶体相场模拟. 物理学报, 2022, 71(9): 096102. doi: 10.7498/aps.71.20212278
    [3] 梁晋洁, 高宁, 李玉红. 体心立方Fe中${ \langle 100 \rangle}$位错环对微裂纹扩展影响的分子动力学研究. 物理学报, 2020, 69(11): 116102. doi: 10.7498/aps.69.20200317
    [4] 祁科武, 赵宇宏, 田晓林, 彭敦维, 孙远洋, 侯华. 取向角对小角度非对称倾斜晶界位错运动影响的晶体相场模拟. 物理学报, 2020, 69(14): 140504. doi: 10.7498/aps.69.20200133
    [5] 祁科武, 赵宇宏, 郭慧俊, 田晓林, 侯华. 温度对小角度对称倾斜晶界位错运动影响的晶体相场模拟. 物理学报, 2019, 68(17): 170504. doi: 10.7498/aps.68.20190051
    [6] 员江娟, 陈铮, 李尚洁, 张静. 晶体相场法研究预变形对熔点附近六角相/正方相相变的影响. 物理学报, 2014, 63(16): 166401. doi: 10.7498/aps.63.166401
    [7] 鲁娜, 王永欣, 陈铮. 非对称倾侧亚晶界的晶体相场法研究. 物理学报, 2014, 63(18): 180508. doi: 10.7498/aps.63.180508
    [8] 蔡月飞, 吕志伟, 李森森, 王雨雷, 朱成禹, 林殿阳, 何伟明. 赫兹型微裂纹光场调制增强作用的系统研究. 物理学报, 2013, 62(23): 234203. doi: 10.7498/aps.62.234203
    [9] 龙建, 王诏玉, 赵宇龙, 龙清华, 杨涛, 陈铮. 不同对称性下晶界结构演化及微观机理的晶体相场法研究. 物理学报, 2013, 62(21): 218101. doi: 10.7498/aps.62.218101
    [10] 赵宇龙, 陈铮, 龙建, 杨涛. 晶体相场法模拟纳米晶材料反霍尔-佩奇效应的微观变形机理. 物理学报, 2013, 62(11): 118102. doi: 10.7498/aps.62.118102
    [11] 蔡杰, 季乐, 杨盛志, 张在强, 刘世超, 李艳, 王晓彤, 关庆丰. 强流脉冲电子束作用下金属锆的微观结构与应力状态. 物理学报, 2013, 62(15): 156106. doi: 10.7498/aps.62.156106
    [12] 高英俊, 罗志荣, 黄创高, 卢强华, 林葵. 晶体相场方法研究二维六角相向正方相结构转变. 物理学报, 2013, 62(5): 050507. doi: 10.7498/aps.62.050507
    [13] 陈成, 陈铮, 张静, 杨涛. 晶体相场法模拟异质外延过程中界面形态演化与晶向倾侧. 物理学报, 2012, 61(10): 108103. doi: 10.7498/aps.61.108103
    [14] 李艳, 蔡杰, 吕鹏, 邹阳, 万明珍, 彭冬晋, 顾倩倩, 关庆丰. 强流脉冲电子束诱发纯钛表面的微观结构及应力状态. 物理学报, 2012, 61(5): 056105. doi: 10.7498/aps.61.056105
    [15] 邵宇飞, 王绍青. 基于准连续介质方法模拟纳米多晶体Ni中裂纹的扩展. 物理学报, 2010, 59(10): 7258-7265. doi: 10.7498/aps.59.7258
    [16] 王 风, 刘德森, 蒋小平, 周素梅. 离子交换引起的GRIN棒透镜大折射率差值分析. 物理学报, 2007, 56(10): 5890-5894. doi: 10.7498/aps.56.5890
    [17] 胡深洋, 折晓黎, 李玉兰. 不同应力场中马氏体形核的择优取向. 物理学报, 1996, 45(2): 339-344. doi: 10.7498/aps.45.339
    [18] 邢修三. 微裂纹演化的随机模型. 物理学报, 1981, 30(12): 1615-1623. doi: 10.7498/aps.30.1615
    [19] 叶恒强. 有简单取向关系的两晶体间电子衍射图相重的规律. 物理学报, 1979, 28(1): 78-87. doi: 10.7498/aps.28.78
    [20] 用电阻法确定裂纹扩展的开裂点. 物理学报, 1976, 25(4): 344-351. doi: 10.7498/aps.25.344
计量
  • 文章访问数:  6945
  • PDF下载量:  296
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-31
  • 修回日期:  2015-05-06
  • 刊出日期:  2015-09-05

/

返回文章
返回