搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同对称性下晶界结构演化及微观机理的晶体相场法研究

龙建 王诏玉 赵宇龙 龙清华 杨涛 陈铮

引用本文:
Citation:

不同对称性下晶界结构演化及微观机理的晶体相场法研究

龙建, 王诏玉, 赵宇龙, 龙清华, 杨涛, 陈铮

Phase field crystal study on grain boundary evolution and its micro-mechanism under various symmetry

Long Jian, Wang Zhao-Yu, Zhao Yu-Long, Long Qing-Hua, Yang Tao, Chen Zheng
PDF
导出引用
  • 采用晶体相场法研究了单轴拉伸下三角相双晶变形过程及机理, 并重点分析了小角对称与非对称晶界和大角对称与非对称晶界在变形过程中的演化及微观机理, 变形过程中应力方向与初始晶界方向平行. 结果表明, 小角对称晶界由柏氏矢量夹角呈60的两种刃型位错组成, 变形过程中不同类型的位错运动方向相反, 并各自与另一晶界上同一类型位错相互吸引以致部分位错发生湮没; 小角非对称晶界上的位错类型单一, 在应力作用下先沿水平方向攀移, 后各自分解成柏氏矢量约呈120的两位错, 并通过位错运动和湮没最终形成理想单晶; 大角晶界在应力的作用下先保持水平状态而后锯齿化并发射位错, 伴随着位错运动和湮没, 最终大角非对称晶界发生分解, 而大角对称晶界则重新平直化, 表明大角对称晶界比大角非对称晶界更稳定, 这与实验和分子动力学模拟结果一致.
    Phase field crystal method is used to investigate the deformation process and mechanism of twined structure of a trigonal phase under uniaxial tensile deformation, and the evolution and corresponding micro-mechanism of low-angle symmetric and asymmetric grain boundaries (GB) as well as high-angle symmetric and asymmetric GB during deformation process are analyzed in detail. The deformation is performed under the condition that the direction of applied stress is parallel to that of initial GB. Results show that low-angle symmetric GB is composed of two kinds of edge dislocations with the angle made by Burgers vectors being around 60 During deformation, two kinds of dislocations in low-angle symmetric GB move along two opposite directions, then meet with the same kind of dislocation emitted from another GB leading to the annihilation of partial dislocations. As to the low-angle asymmetric GB, its only one kind of dislocation first climbs and moves along the horizontal direction of the applied stress, then each dislocation will break down into two dislocations with their Burgers vectors making an angle about 120, finally a perfect single crystal is formed via the movement and annihilation of dislocations. High-angle GBs first keep horizontal shape under the applied stress, then become serrated, and the dislocations are emitted from the cusps in GBs. Finally, the high-angle asymmetric GB will decompose with the movement and annihilation of dislocation, while the shape of high-angle symmetric GB becomes horizontal again. It can be seen that the high-angle symmetric GB is more stable than the high-angle asymmetric GB; this is in agreement with the results of experiments and molecular dynamics.
    • 基金项目: 国家自然科学基金 (批准号: 51274167, 51174168)和西北工业大学基础研究基金 (批准号: NPU-FFR-JC20120222)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51274167, 51174168), and the NPU Foundation for Fundamental Research (Grant No. NPU-FFR-JC20120222).
    [1]

    Hamilton J C, Siegel D J, Daruka I, Leonard F 2003 Phys. Rev. Lett. 90 246102

    [2]

    Sutton A P, Balluffi R W 1995 Interfaces in Crystalline Materials (Oxford: Clarendon Press)

    [3]

    Medlin D L, Foiles S M, Cohen D 2001 Acta Mater. 49 3689

    [4]

    Marquis E A, Hamilton J C, Medlin D L, Léonard F 2004 Phys. Rev. Lett. 93 156101

    [5]

    Randle V 1996 The Role of the Coincident Site Lattice in Grain Boundary Engineering (Cambridge: Cambridge University Press)

    [6]

    Zhang L, Wang S Q, Ye H Q 2004 Acta Phys. Sin. 53 2497 (in Chinese) [张林, 王绍青, 叶恒强 2004 物理学报 53 2497]

    [7]

    Wen Y H, Zhu T, Cao L X, Wang C Y 2003 Acta Phys. Sin. 52 2520 (in Chinese) [文玉华, 朱弢, 曹立霞, 王崇愚 2003 物理学报 52 2520]

    [8]

    Sun W, Chang M, Yang B H 1998 Acta Phys. Sin. 47 0591 (in Chinese) [孙伟, 常明, 杨保和 1998 物理学报 47 0591]

    [9]

    Stefanovic P, Haataja M, Provatas N 2009 Phys. Rev. E 80 046107

    [10]

    Wen Y L, Chun X, Bo W X, Fang L G 2008 Chin. Phys. B 17 1078

    [11]

    Li J J, Wang J C, Yang G C 2008 Chin. Phys. B 17 3516

    [12]

    Zhang Y X, Wang J C, Yang Y J, Yang G C, Zhou Y H 2008 Chin. Phys. B 17 3523

    [13]

    Moelans N, Blanpain B, Wollants P 2008 Calphad 32 268

    [14]

    Zaeem M A, Kadiri H E, Wang P T, Horstemeyer M F 2011 Comp. Mater. Sci. 50 2488

    [15]

    Moelans N, Blanpain B, Wollants P 2008 Phys. Rev. B 78 024113

    [16]

    Elder K R, Katakowski M, Haataja M, Grant M 2002 Phys. Rev. Lett. 88 245701

    [17]

    Elder K L, Grant M 2004 Phys. Rev. E 70 051605

    [18]

    Ren X, Wang J C, Yang Y J, Yang G C 2010 Acta Phys. Sin. 59 3595 (in Chinese) [任秀, 王锦程, 杨玉娟, 杨根仓 2010 物理学报 59 3595]

    [19]

    Yang T, Chen Z, Dong W P 2011 Acta Metall. Sin. 47 1301 (in Chinese) [杨涛, 陈铮, 董卫平 2011 金属学报 47 1301]

    [20]

    Hirouchi T, Takaki T, Tomita Y 2010 Int. J. Mech. Sci. 52 309

    [21]

    Hirouchi T, Takaki T, Tomita Y 2009 Comp. Mater. Sci. 44 1192

    [22]

    Xu Y N 2012 Fundamentals of Materials Science (Beijing: Higher Education Press) p439 (in Chinese) [徐永宁 2012 材料科学基础 (北京: 高等教育出版社) 第439页]

    [23]

    Shimokawa T, Kinari T, Shintaku S 2007 Phys. Rev. B 75 144108

    [24]

    Tschopp M A, McDowell D L 2007 Phil. Mag. 87 3147

  • [1]

    Hamilton J C, Siegel D J, Daruka I, Leonard F 2003 Phys. Rev. Lett. 90 246102

    [2]

    Sutton A P, Balluffi R W 1995 Interfaces in Crystalline Materials (Oxford: Clarendon Press)

    [3]

    Medlin D L, Foiles S M, Cohen D 2001 Acta Mater. 49 3689

    [4]

    Marquis E A, Hamilton J C, Medlin D L, Léonard F 2004 Phys. Rev. Lett. 93 156101

    [5]

    Randle V 1996 The Role of the Coincident Site Lattice in Grain Boundary Engineering (Cambridge: Cambridge University Press)

    [6]

    Zhang L, Wang S Q, Ye H Q 2004 Acta Phys. Sin. 53 2497 (in Chinese) [张林, 王绍青, 叶恒强 2004 物理学报 53 2497]

    [7]

    Wen Y H, Zhu T, Cao L X, Wang C Y 2003 Acta Phys. Sin. 52 2520 (in Chinese) [文玉华, 朱弢, 曹立霞, 王崇愚 2003 物理学报 52 2520]

    [8]

    Sun W, Chang M, Yang B H 1998 Acta Phys. Sin. 47 0591 (in Chinese) [孙伟, 常明, 杨保和 1998 物理学报 47 0591]

    [9]

    Stefanovic P, Haataja M, Provatas N 2009 Phys. Rev. E 80 046107

    [10]

    Wen Y L, Chun X, Bo W X, Fang L G 2008 Chin. Phys. B 17 1078

    [11]

    Li J J, Wang J C, Yang G C 2008 Chin. Phys. B 17 3516

    [12]

    Zhang Y X, Wang J C, Yang Y J, Yang G C, Zhou Y H 2008 Chin. Phys. B 17 3523

    [13]

    Moelans N, Blanpain B, Wollants P 2008 Calphad 32 268

    [14]

    Zaeem M A, Kadiri H E, Wang P T, Horstemeyer M F 2011 Comp. Mater. Sci. 50 2488

    [15]

    Moelans N, Blanpain B, Wollants P 2008 Phys. Rev. B 78 024113

    [16]

    Elder K R, Katakowski M, Haataja M, Grant M 2002 Phys. Rev. Lett. 88 245701

    [17]

    Elder K L, Grant M 2004 Phys. Rev. E 70 051605

    [18]

    Ren X, Wang J C, Yang Y J, Yang G C 2010 Acta Phys. Sin. 59 3595 (in Chinese) [任秀, 王锦程, 杨玉娟, 杨根仓 2010 物理学报 59 3595]

    [19]

    Yang T, Chen Z, Dong W P 2011 Acta Metall. Sin. 47 1301 (in Chinese) [杨涛, 陈铮, 董卫平 2011 金属学报 47 1301]

    [20]

    Hirouchi T, Takaki T, Tomita Y 2010 Int. J. Mech. Sci. 52 309

    [21]

    Hirouchi T, Takaki T, Tomita Y 2009 Comp. Mater. Sci. 44 1192

    [22]

    Xu Y N 2012 Fundamentals of Materials Science (Beijing: Higher Education Press) p439 (in Chinese) [徐永宁 2012 材料科学基础 (北京: 高等教育出版社) 第439页]

    [23]

    Shimokawa T, Kinari T, Shintaku S 2007 Phys. Rev. B 75 144108

    [24]

    Tschopp M A, McDowell D L 2007 Phil. Mag. 87 3147

  • [1] 陈鸿翔, 刘墨点, 范智斌, 陈晓东. 低对称性能谷光子晶体中的拓扑光传输. 物理学报, 2024, 73(10): 104205. doi: 10.7498/aps.73.20240040
    [2] 曾超, 毛一屹, 吴骥宙, 苑涛, 戴汉宁, 陈宇翱. 一维超冷原子动量光晶格中的手征对称性破缺拓扑相. 物理学报, 2024, 73(4): 040301. doi: 10.7498/aps.73.20231566
    [3] 高丰, 李欢庆, 宋卓, 赵宇宏. 三模晶体相场法研究应变诱导石墨烯晶界位错演化. 物理学报, 2024, 73(24): . doi: 10.7498/aps.73.20241368
    [4] 陈伟龙, 郭榕榕, 仝钰申, 刘莉莉, 周圣岚, 林金海. 亚禁带光照对CdZnTe晶体中晶界电场分布的影响. 物理学报, 2022, 71(22): 226101. doi: 10.7498/aps.71.20220896
    [5] 郭灿, 赵玉平, 邓英远, 张忠明, 徐春杰. 运动晶界与调幅分解相互作用过程的相场法研究. 物理学报, 2022, 71(7): 078101. doi: 10.7498/aps.71.20211973
    [6] 夏文强, 赵彦, 刘振智, 鲁晓刚. 应变诱发四方相小角度对称倾侧晶界位错反应的晶体相场模拟. 物理学报, 2022, 71(9): 096102. doi: 10.7498/aps.71.20212278
    [7] 祁科武, 赵宇宏, 田晓林, 彭敦维, 孙远洋, 侯华. 取向角对小角度非对称倾斜晶界位错运动影响的晶体相场模拟. 物理学报, 2020, 69(14): 140504. doi: 10.7498/aps.69.20200133
    [8] 祁科武, 赵宇宏, 郭慧俊, 田晓林, 侯华. 温度对小角度对称倾斜晶界位错运动影响的晶体相场模拟. 物理学报, 2019, 68(17): 170504. doi: 10.7498/aps.68.20190051
    [9] 臧航, 黄智晟, 李涛, 郭荣明. 单晶六方SiC和多晶化学气相沉积SiC的常温辐照肿胀差异性. 物理学报, 2017, 66(6): 066104. doi: 10.7498/aps.66.066104
    [10] 郭刘洋, 陈铮, 龙建, 杨涛. 晶体相场法研究应力状态及晶体取向对微裂纹尖端扩展行为的影响. 物理学报, 2015, 64(17): 178102. doi: 10.7498/aps.64.178102
    [11] 周年杰, 黄伟其, 苗信建, 王刚, 董泰阁, 黄忠梅, 尹君. 量子受限效应和对称性效应对硅光子晶体禁带的影响. 物理学报, 2015, 64(6): 064208. doi: 10.7498/aps.64.064208
    [12] 王海燕, 高雪云, 任慧平, 张红伟, 谭会杰. 稀土La在-Fe中占位倾向及对晶界影响的第一性原理研究. 物理学报, 2014, 63(14): 148101. doi: 10.7498/aps.63.148101
    [13] 鲁娜, 王永欣, 陈铮. 非对称倾侧亚晶界的晶体相场法研究. 物理学报, 2014, 63(18): 180508. doi: 10.7498/aps.63.180508
    [14] 高英俊, 罗志荣, 黄创高, 卢强华, 林葵. 晶体相场方法研究二维六角相向正方相结构转变. 物理学报, 2013, 62(5): 050507. doi: 10.7498/aps.62.050507
    [15] 赵宇龙, 陈铮, 龙建, 杨涛. 晶体相场法模拟纳米晶材料反霍尔-佩奇效应的微观变形机理. 物理学报, 2013, 62(11): 118102. doi: 10.7498/aps.62.118102
    [16] 陈成, 陈铮, 张静, 杨涛. 晶体相场法模拟异质外延过程中界面形态演化与晶向倾侧. 物理学报, 2012, 61(10): 108103. doi: 10.7498/aps.61.108103
    [17] 王晓中, 林理彬, 何捷, 陈军. 第一性原理方法研究He掺杂Al晶界力学性质. 物理学报, 2011, 60(7): 077104. doi: 10.7498/aps.60.077104
    [18] 路凯, 方建会, 张明江, 王鹏. 相空间中离散完整系统的Noether对称性和Mei对称性. 物理学报, 2009, 58(11): 7421-7425. doi: 10.7498/aps.58.7421
    [19] 黄运华, 张 跃, 白雪冬, 贺 建, 刘 娟, 张晓梅. ZnO双晶纳米梳. 物理学报, 2006, 55(3): 1491-1496. doi: 10.7498/aps.55.1491
    [20] 罗绍凯. 奇异系统Hamilton正则方程的Mei对称性、Noether对称性和Lie对称性. 物理学报, 2004, 53(1): 5-10. doi: 10.7498/aps.53.5
计量
  • 文章访问数:  6750
  • PDF下载量:  460
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-08
  • 修回日期:  2013-07-29
  • 刊出日期:  2013-11-05

/

返回文章
返回