-
本文采用重合位置点阵理论构建了 -Fe的3[110](112)对称倾转晶界模型,通过基于密度泛函理论的平面波超软赝势方法研究了稀土La元素在 -Fe中的占位倾向. 结果表明,La在 -Fe晶界的杂质形成能最低,因而La原子倾向于占据晶界区;掺杂La前后的 -Fe晶界电子结构计算结果显示,La占位于 -Fe晶界会使体系中的电荷发生重新分配,将提供更多电子用于晶界区成键,使得Fe原子得到更多的电子,这将导致掺杂区原子间结合有离子化趋势,从而使La与晶界区相邻Fe原子之间的相互作用加强,也使晶界原子与晶界两侧Fe原子的键合加强,从能量角度解释了材料宏观力学性能变化的原因;计算同时发现,La加入后,也使晶界上的原子成键区态密度左移,降低了体系的总能量,使晶界结构更为稳定.The -Fe 3[110] (112) symmetrical tilt grain boundary model is established by the coincidence site lattice theory. First-principles plane wave ultrasoft pseudopotential method based on the density functional theory is used to calculate the La occupying tendency in -Fe. The results show that La elements tend to be located at grain boundary in the -Fe since the impurity formation energy keeps lowest. On this basis, the electronic structure of La doped in -Fe grain boundary is also calculated. The results indicate that the charges in the system are redistributed to provide more electrons for the grain boundary bonding when the La occupies -Fe grain boundary. Meanwhile, Fe atoms obtain more electrons, and the La doped region combination has the ion-tendency toward strengthening the interaction between La atom and Fe atoms in the adjacent boundary region, and the Fe atom bonds in the grain boundaries and on both sides of the grain boundary also strengthen, which is the reason why the mechanical properties change from the energy point of view. Moreover, La addition also makes the atomic density of states on the grain boundary move to the left, reduce the total energy of the system, and make the grain boundary more stable.
-
Keywords:
- La /
- -Fe /
- grain boundaries /
- first-principles
[1] Ji J W 2001 Rare Earth 22 7 (in Chinese) [戢景文 2001 稀土 22 7]
[2] Warren M, Garrison J, James L M 2005 Mater. Sci. Eng. A 55 299
[3] [4] Wang L M, Lin Q, Yue L J 2008 J. Alloys. Compd. 451 534
[5] [6] Garces J, Gonzalez R, Vajda P 2009 Phys. Rev. B 79 054113
[7] [8] Seletskaia T, Osetsky Y, Stoller R E 2008 Phys. Rev. B 78 134103
[9] [10] Segall M D, Philip Lindan J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter. 14 2717
[11] [12] [13] Zhou H B, Jin S, Zhang Y, Lu G H 2011 Prog. Nat. Sci.: Mater. 21 240
[14] He X F, Terentyev D, Yang W 2011 At. Energy Sci. Tech. 45 902 (in Chinese) [贺新福, D. Terentyev, 杨文 2011 原子能科学技术 45 902]
[15] [16] [17] Liu G L, Li R D 2004 Acta Phys. Sin. 53 3482 (in Chinese) [刘贵立, 李荣德 2004 物理学报 53 3482]
[18] Zhang Y, L G H, Deng S H, Wang T M 2006 Acta Phys. Sin. 55 2901 (in Chinese) [张颖, 吕广宏, 邓胜华, 王天民 2006 物理学报 55 2901]
[19] [20] [21] Masatake Y, Motoyuki S, Hideo K 2005 Science 307 393
[22] Shang J X, Zhao D L, Wang C Y 2003 Sci. China E 33 19 (in Chinese) [尚家香, 赵栋梁, 王崇愚 2003 中国科学E辑 33 19]
[23] [24] Chen S Y, Liu C S 1998 J. At. Mol. Phys. 15 347 (in Chinese) [陈岁元, 刘常升 1998 原子与分子物理学报 15 347]
[25] [26] [27] Wan W J, Yao R H, Geng K W 2011 Acta Phys. Sin. 60 067103 (in Chinese) [万文坚, 姚若河, 耿魁伟 2011 物理学报 60 067103]
[28] [29] Meng Z H, Li J B, Guo Y Q, Wang Y 2012 Acta Phys. Sin. 61 107101 (in Chinese) [孟振华, 李俊斌, 郭永权, 王义 2012 物理学报 61 107101]
[30] [31] Mao P L, Yu B, Liu Z, Wang F, Ju Y 2013 J. Mag. Alloy 1 256
[32] Becquart C S, Domain C 2011 Metall. Mater. Trans. A 42 852
[33] [34] Niu L, Wang X Z, Zhu J Q, Gao W 2013 Chin. Phys. B 22 017101
[35] [36] [37] Gou H Y, Gao F M, Zhang J W, Li Z P 2011 Chin. Phys. B 20 016201
-
[1] Ji J W 2001 Rare Earth 22 7 (in Chinese) [戢景文 2001 稀土 22 7]
[2] Warren M, Garrison J, James L M 2005 Mater. Sci. Eng. A 55 299
[3] [4] Wang L M, Lin Q, Yue L J 2008 J. Alloys. Compd. 451 534
[5] [6] Garces J, Gonzalez R, Vajda P 2009 Phys. Rev. B 79 054113
[7] [8] Seletskaia T, Osetsky Y, Stoller R E 2008 Phys. Rev. B 78 134103
[9] [10] Segall M D, Philip Lindan J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter. 14 2717
[11] [12] [13] Zhou H B, Jin S, Zhang Y, Lu G H 2011 Prog. Nat. Sci.: Mater. 21 240
[14] He X F, Terentyev D, Yang W 2011 At. Energy Sci. Tech. 45 902 (in Chinese) [贺新福, D. Terentyev, 杨文 2011 原子能科学技术 45 902]
[15] [16] [17] Liu G L, Li R D 2004 Acta Phys. Sin. 53 3482 (in Chinese) [刘贵立, 李荣德 2004 物理学报 53 3482]
[18] Zhang Y, L G H, Deng S H, Wang T M 2006 Acta Phys. Sin. 55 2901 (in Chinese) [张颖, 吕广宏, 邓胜华, 王天民 2006 物理学报 55 2901]
[19] [20] [21] Masatake Y, Motoyuki S, Hideo K 2005 Science 307 393
[22] Shang J X, Zhao D L, Wang C Y 2003 Sci. China E 33 19 (in Chinese) [尚家香, 赵栋梁, 王崇愚 2003 中国科学E辑 33 19]
[23] [24] Chen S Y, Liu C S 1998 J. At. Mol. Phys. 15 347 (in Chinese) [陈岁元, 刘常升 1998 原子与分子物理学报 15 347]
[25] [26] [27] Wan W J, Yao R H, Geng K W 2011 Acta Phys. Sin. 60 067103 (in Chinese) [万文坚, 姚若河, 耿魁伟 2011 物理学报 60 067103]
[28] [29] Meng Z H, Li J B, Guo Y Q, Wang Y 2012 Acta Phys. Sin. 61 107101 (in Chinese) [孟振华, 李俊斌, 郭永权, 王义 2012 物理学报 61 107101]
[30] [31] Mao P L, Yu B, Liu Z, Wang F, Ju Y 2013 J. Mag. Alloy 1 256
[32] Becquart C S, Domain C 2011 Metall. Mater. Trans. A 42 852
[33] [34] Niu L, Wang X Z, Zhu J Q, Gao W 2013 Chin. Phys. B 22 017101
[35] [36] [37] Gou H Y, Gao F M, Zhang J W, Li Z P 2011 Chin. Phys. B 20 016201
计量
- 文章访问数: 5935
- PDF下载量: 386
- 被引次数: 0