搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一维超冷原子动量光晶格中的手征对称性破缺拓扑相

曾超 毛一屹 吴骥宙 苑涛 戴汉宁 陈宇翱

引用本文:
Citation:

一维超冷原子动量光晶格中的手征对称性破缺拓扑相

曾超, 毛一屹, 吴骥宙, 苑涛, 戴汉宁, 陈宇翱

Topological phase in one-dimensional momentum space lattice of ultracold atoms without chiral symmetry

Zeng Chao, Mao Yi-Yi, Wu Ji-Zhou, Yuan Tao, Dai Han-Ning, Chen Yu-Ao
PDF
HTML
导出引用
  • 对称性在理解物质的拓扑态方面具有关键作用. 过去人们认为手征对称性保证了一维晶格的量子化Zak相位及其对应的非平庸拓扑相. 本文展现了在一维手征对称性破缺的情况下, 晶格系统仍具有量子化Zak相位和非平庸拓扑相. 具体而言, 在超冷原子动量晶格系统中有效地模拟了一个链长为26、手征对称性破缺的Zigzag模型, 其中相等的次近邻耦合强度能够在保留空间反演对称性的同时破坏手征对称性. 通过测量原子的时间平均波包位移来获得系统的拓扑不变量, 并得到了其对应的量子化的Zak相位. 此外, 还观测到系统随着最近邻耦合强度比例的变化会从非平庸拓扑相转变为平庸拓扑相. 本文不仅为对称性及拓扑相的相关研究提供了一个完全可控的平台, 还可以通过控制格点间耦合强度和原子间相互作用, 探索例如Tasaki, Aharonov-Bohm caging模型中的平带拓扑以及引入相互作用研究的非线性拓扑现象.
    Symmetry plays a crucial role in understanding topological phases in materials. In one-dimensional systems, such as the Su-Schrieffer-Heeger (SSH) model, chiral symmetry is thought to ensure the quantization of the Zak phase and the nontrivial topological phase. However, our work demonstrates that the one-dimensional lattice system with broken chiral symmetry can still possess quantized Zak phase and nontrivial topological phase. Specifically, we use a Bose-Einstein condensate of 87Rb atoms in a momentum space lattice of ultracold atoms to effectively simulate a one-dimensional Zigzag model of 26 sites, which intrinsically breaks the chiral symmetry by additional next-nearest-neighbor coupling. To ensure the existence of the nontrivial topological phase, where the Zak phase can be measured from the time-averaged displacement during the system’s evolution, we need to preserve the inversion symmetry by modulating laser power so that all next-nearest-neighbor coupling strengths are equal. Furthermore, by changing the ratio of nearest-neighbor coupling strengths, we observe a topological phase transition from a nontrivial topological phase to a trivial topological phase at the point where the ratio equals 1. Our work demonstrates that the ultracold atom system provides a controllable platform for studying the symmetrical phase and topological phase, with the potential to explore nonlinear topological phenomena by increasing the interactions among atoms. In addition, our system can be used to investigate other interesting topological phenomena with more complex models, such as critical phenomena at the phase transitions and flat band structures in the extended SSH model with long-range coupling. By controlling the coupling strengths, we can also explore the influence of different symmetries on the topological properties of extended SSH models in the future. Moreover, our platform makes it possible to studythe models with more energy bands, such as the Aharonov-Bohm caging model with a three-level structure, which shows peculiar flat-band properties. This work provides opportunities for various studies in the fields of symmetry, topology, and the interaction of controllable quantum systems.
      通信作者: 戴汉宁, daihan@ustc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12074367)、国家重点研发计划(批准号: 2020YFA0309804)、上海市市级科技重大专项(批准号: 2019SHZDZX01)、中国科学院战略性先导科技专项 (B 类)(批准号: XDB35020200)、科技创新2030-“量子通信与量子计算机”重大项目(批准号: 2021ZD0302002)和新基石科学基金资助的课题.
      Corresponding author: Dai Han-Ning, daihan@ustc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12074367), the National Key Research and Development Program of China (Grant No. 2020YFA0309804), the Shanghai Municipal Science and Technology Major Project, China (Grant No. 2019SHZDZX01), the Strategic Priority Research Program of Chinese Academy of Sciences, China (Grant No. XDB35020200), the Innovation Program for Quantum Science and Technology, China (Grant No. 2021ZD0302002), and the New Cornerstone Science Foundation, China.
    [1]

    Klitzing K V, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494Google Scholar

    [2]

    Tsui D C, Stormer H L, Gossard A C 1982 Phys. Rev. Lett. 48 1559Google Scholar

    [3]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [4]

    Nayak C, Simon S H, Stern A, Freedman M, Sarma S D 2008 Rev. Mod. Phys. 80 1093Google Scholar

    [5]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [6]

    Huang S M, Xu S Y, Belopolski I, et al. 2015 Nat. Commun. 6 7373Google Scholar

    [7]

    Chiu C K, Teo J C Y, Schnyder A P, Ryu S 2016 Rev. Mod. Phys. 88 035005Google Scholar

    [8]

    Ryu S, Schnyder A P, Furusaki A, Ludwig A W W 2010 New J. Phys. 12 065010Google Scholar

    [9]

    Su W P, Schrieffer J R, Heeger A J 1979 Phys. Rev. Lett. 42 1698Google Scholar

    [10]

    Zak J 1989 Phys. Rev. Lett. 62 2747Google Scholar

    [11]

    Atala M, Aidelsburger M, Barreiro J T, Abanin D, Kitagawa T, Demler E, Bloch I 2013 Nat. Phys. 9 795Google Scholar

    [12]

    Cardano F, D’Errico A, Dauphin A, et al. 2017 Nat. Commun. 8 15516Google Scholar

    [13]

    Li G Z, Wang L J, Ye R, Zheng Y L, Wang D W, Liu X J, Dutt A, Yuan L Q, Chen X F 2023 Light Sci. Appl. 12 81Google Scholar

    [14]

    Meier E J, An F A, Dauphin A, Maffei M, Massignan P, Hughes T L, Gadway B 2018 Science 362 929Google Scholar

    [15]

    Xie D Z, Deng T S, Xiao T, Gou W, Chen T, Yi W, Yan B 2020 Phys. Rev. Lett. 124 050502Google Scholar

    [16]

    Choi J Y, Hild S, Zeiher J, Schauß P, Rubio-Abadal A, Yefsah T, Khemani V, Huse D A, Bloch I, Gross C 2016 Science 352 1547Google Scholar

    [17]

    苑涛 戴汉宁 陈宇翱 2023 物理学报 72 160302Google Scholar

    Yuan T, Dai H N, Chen Y A 2023 Acta Phys. Sin. 72 160302Google Scholar

    [18]

    Miert G V, Ortix C, Smith C M 2017 2D Mater. 4 015023

    [19]

    Pérez-González B, Bello M, Gómez-León Á, Platero G 2019 Phys. Rev. B 99 035146Google Scholar

    [20]

    Ahmadi N, Abouie J 2020 Phys. Rev. B 101 195117Google Scholar

    [21]

    Altland A, Zirnbauer M R 1997 Phys. Rev. B 55 1142Google Scholar

    [22]

    Schnyder A P, Ryu S, Furusaki A, Ludwig A W W 2008 Phys. Rev. B 78 195125Google Scholar

    [23]

    Morimoto T, Furusaki A 2013 Phys. Rev. B 88 125129Google Scholar

    [24]

    Jiao Z Q, Longhi S, Wang X W, Gao J, Zhou W H, Wang Y, Fu Y X, Wang L, Ran R J, Qiao L F, Jin X M 2021 Phys. Rev. Lett. 127 147401Google Scholar

    [25]

    Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D, Esslinger T 2014 Nature 515 237Google Scholar

    [26]

    Aidelsburger M, Lohse M, Schweizer C, Atala M, Barreiro J T, Nascimbéne S, Cooper N R, Bloch I, Goldman N 2015 Nat. Phys. 11 612Google Scholar

    [27]

    Longhi S 2018 Opt. Lett. 43 4639Google Scholar

    [28]

    Gadway B 2015 Phys. Rev. A 92 043606Google Scholar

    [29]

    An F A, Meier E J, Gadway B 2018 Phys. Rev. X 8 031045Google Scholar

    [30]

    Rufo S, Lopes N, Continentino M A, Griffith M A R 2019 Phys. Rev. B 100 195432Google Scholar

    [31]

    Pyykkönen V A J, Peotta S, Fabritius P, Mohan J, Esslinger T, Törmä P 2021 Phys. Rev. B 103 144519Google Scholar

    [32]

    Kremer M, Petrides I, Meyer E, Heinrich M, Zilberberg O, Szameit A 2020 Nat. Commun. 11 907Google Scholar

    [33]

    Cáceres-Aravena G, Guzmán-Silva D, Salinas I, Vicencio R A 2022 Phys. Rev. Lett. 128 256602Google Scholar

    [34]

    Li H, Dong Z L, Longhi S, Liang Q, Xie D Z, Yan B 2022 Phys. Rev. Lett. 129 220403Google Scholar

    [35]

    Zhang W X, Wang H T, Sun H J, Zhang X D 2023 Phys. Rev. Lett. 130 206401Google Scholar

  • 图 1  (a) 一维Zigzag模型示意图, 格点之间的最近邻耦合强度为$ u_1 $和$ u_2 $, 次近邻耦合强度为$ v_1 $和$ v_2 $; (b) Zigzag模型的能带分布图; (c), (d)在系统不同的$ u_1/u_2 $情况下, Zigzag模型的环绕数和Zak相位的变化结果, 参数为$ v_1=v_2 $, $ v_1/u_2=0.4 $

    Fig. 1.  (a) Schematic diagram of a one-dimensional (1D) Zigzag model with nearest-neighbor coupling strengths $ u_1 $ and $ u_2 $ and next-nearest-neighbor coupling strengths $ v_1 $ and $ v_2 $; (b) band structure of the Zigzag model; (c), (d) variations of the winding number and Zak phase of the Zigzag model as a function of $ u_1/u_2 $, with parameters $ v_1 = v_2 $ and $ v_1/u_2 = 0.4 $.

    图 2  实现一维Zigzag晶格 (a)利用Bragg过程实现一维动量晶格(上部分)和通过时间飞行成像探测原子数分布(下部分); (b)动量晶格中的原子色散曲线, 分别利用一阶和二阶Bragg跃迁耦合最近邻和次近邻格点

    Fig. 2.  Realization of 1D Zigzag lattice: (a) 1D momentum lattice realized using Bragg processes (upper part) and visualized via time-of-flight imaging (lower part); (b) atomic dispersion curve in the momentum lattice includes first-order and second-order Bragg transitions, which are used to couple the nearest-neighbor and next-nearest-neighbor lattice sites.

    图 3  时间平均波包位移的测量 (a) $ u_1/u_2=2 $时, 系统的动力学演化过程, 其中左图为实验结果, 右图为数值模拟结果; (b) 通过(5)式得到的图(a)对应的TAMD的演化结果; (c), (d) $ u_1/u_2=0.4 $时, 测量得到的动力学演化过程和TAMD演化结果. 图中采用的实验参数: L = 26, $ v_1=v_2=0.15 $ kHz, $ u_2=0.35 $ kHz, 演化时长为$ 3.1\hbar/u_2 $, 时间间隔为$ 0.11\hbar/u_2 $

    Fig. 3.  Measurement of time-averaged wavepacket displacement: (a) Dynamics evolution of the system for $ u_1/u_2=2 $, where the left plot shows experimental results, and the right plot presents numerical simulations; (b) evolution of TAMD corresponding to panel (a) obtained using Eq. (5); (c), (d) dynamics evolution and TAMD results were obtained for $ u_1/u_2=0.4 $. Experimental parameters: L = 26, $ v_1=v_2=0.15 $ kHz, $ u_2=0.35 $ kHz, an evolution time of $ 3.1\hbar/u_2 $, and a time interval of $ 0.11\hbar/u_2 $.

    图 4  不同$ u_1/u_2 $的Zigzag模型对应的TAMD变化曲线. 图中灰色虚线是理想模型对应的结果

    Fig. 4.  Variation curves of TAMD for different $ u_1/u_2 $ in the Zigzag model. Gray dashed lines indicate results from the ideal model.

  • [1]

    Klitzing K V, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494Google Scholar

    [2]

    Tsui D C, Stormer H L, Gossard A C 1982 Phys. Rev. Lett. 48 1559Google Scholar

    [3]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [4]

    Nayak C, Simon S H, Stern A, Freedman M, Sarma S D 2008 Rev. Mod. Phys. 80 1093Google Scholar

    [5]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [6]

    Huang S M, Xu S Y, Belopolski I, et al. 2015 Nat. Commun. 6 7373Google Scholar

    [7]

    Chiu C K, Teo J C Y, Schnyder A P, Ryu S 2016 Rev. Mod. Phys. 88 035005Google Scholar

    [8]

    Ryu S, Schnyder A P, Furusaki A, Ludwig A W W 2010 New J. Phys. 12 065010Google Scholar

    [9]

    Su W P, Schrieffer J R, Heeger A J 1979 Phys. Rev. Lett. 42 1698Google Scholar

    [10]

    Zak J 1989 Phys. Rev. Lett. 62 2747Google Scholar

    [11]

    Atala M, Aidelsburger M, Barreiro J T, Abanin D, Kitagawa T, Demler E, Bloch I 2013 Nat. Phys. 9 795Google Scholar

    [12]

    Cardano F, D’Errico A, Dauphin A, et al. 2017 Nat. Commun. 8 15516Google Scholar

    [13]

    Li G Z, Wang L J, Ye R, Zheng Y L, Wang D W, Liu X J, Dutt A, Yuan L Q, Chen X F 2023 Light Sci. Appl. 12 81Google Scholar

    [14]

    Meier E J, An F A, Dauphin A, Maffei M, Massignan P, Hughes T L, Gadway B 2018 Science 362 929Google Scholar

    [15]

    Xie D Z, Deng T S, Xiao T, Gou W, Chen T, Yi W, Yan B 2020 Phys. Rev. Lett. 124 050502Google Scholar

    [16]

    Choi J Y, Hild S, Zeiher J, Schauß P, Rubio-Abadal A, Yefsah T, Khemani V, Huse D A, Bloch I, Gross C 2016 Science 352 1547Google Scholar

    [17]

    苑涛 戴汉宁 陈宇翱 2023 物理学报 72 160302Google Scholar

    Yuan T, Dai H N, Chen Y A 2023 Acta Phys. Sin. 72 160302Google Scholar

    [18]

    Miert G V, Ortix C, Smith C M 2017 2D Mater. 4 015023

    [19]

    Pérez-González B, Bello M, Gómez-León Á, Platero G 2019 Phys. Rev. B 99 035146Google Scholar

    [20]

    Ahmadi N, Abouie J 2020 Phys. Rev. B 101 195117Google Scholar

    [21]

    Altland A, Zirnbauer M R 1997 Phys. Rev. B 55 1142Google Scholar

    [22]

    Schnyder A P, Ryu S, Furusaki A, Ludwig A W W 2008 Phys. Rev. B 78 195125Google Scholar

    [23]

    Morimoto T, Furusaki A 2013 Phys. Rev. B 88 125129Google Scholar

    [24]

    Jiao Z Q, Longhi S, Wang X W, Gao J, Zhou W H, Wang Y, Fu Y X, Wang L, Ran R J, Qiao L F, Jin X M 2021 Phys. Rev. Lett. 127 147401Google Scholar

    [25]

    Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D, Esslinger T 2014 Nature 515 237Google Scholar

    [26]

    Aidelsburger M, Lohse M, Schweizer C, Atala M, Barreiro J T, Nascimbéne S, Cooper N R, Bloch I, Goldman N 2015 Nat. Phys. 11 612Google Scholar

    [27]

    Longhi S 2018 Opt. Lett. 43 4639Google Scholar

    [28]

    Gadway B 2015 Phys. Rev. A 92 043606Google Scholar

    [29]

    An F A, Meier E J, Gadway B 2018 Phys. Rev. X 8 031045Google Scholar

    [30]

    Rufo S, Lopes N, Continentino M A, Griffith M A R 2019 Phys. Rev. B 100 195432Google Scholar

    [31]

    Pyykkönen V A J, Peotta S, Fabritius P, Mohan J, Esslinger T, Törmä P 2021 Phys. Rev. B 103 144519Google Scholar

    [32]

    Kremer M, Petrides I, Meyer E, Heinrich M, Zilberberg O, Szameit A 2020 Nat. Commun. 11 907Google Scholar

    [33]

    Cáceres-Aravena G, Guzmán-Silva D, Salinas I, Vicencio R A 2022 Phys. Rev. Lett. 128 256602Google Scholar

    [34]

    Li H, Dong Z L, Longhi S, Liang Q, Xie D Z, Yan B 2022 Phys. Rev. Lett. 129 220403Google Scholar

    [35]

    Zhang W X, Wang H T, Sun H J, Zhang X D 2023 Phys. Rev. Lett. 130 206401Google Scholar

  • [1] 陈鸿翔, 刘墨点, 范智斌, 陈晓东. 低对称性能谷光子晶体中的拓扑光传输. 物理学报, 2024, 73(10): 104205. doi: 10.7498/aps.73.20240040
    [2] 苑涛, 戴汉宁, 陈宇翱. 超冷原子动量光晶格中的非线性拓扑泵浦. 物理学报, 2023, 72(16): 160302. doi: 10.7498/aps.72.20230740
    [3] 高慧芬, 周小芳, 黄学勤. 二维声子晶体中Zak相位诱导的界面态. 物理学报, 2022, 71(4): 044301. doi: 10.7498/aps.71.20211642
    [4] 高慧芬, 周小芳, 黄学勤. 二维声子晶体中Zak相位诱导的界面态. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211642
    [5] 丁光涛. 构造Birkhoff表示的Hojman方法与Birkhoff对称性. 物理学报, 2010, 59(6): 3643-3647. doi: 10.7498/aps.59.3643
    [6] 葛伟宽, 张毅, 薛纭. Rosenberg问题的对称性与守恒量. 物理学报, 2010, 59(7): 4434-4436. doi: 10.7498/aps.59.4434
    [7] 丁光涛. 规范变换对Birkhoff系统对称性的影响. 物理学报, 2009, 58(11): 7431-7435. doi: 10.7498/aps.58.7431
    [8] 路凯, 方建会, 张明江, 王鹏. 相空间中离散完整系统的Noether对称性和Mei对称性. 物理学报, 2009, 58(11): 7421-7425. doi: 10.7498/aps.58.7421
    [9] 罗绍凯. Lagrange系统一类新型的非Noether绝热不变量——Lutzky型绝热不变量. 物理学报, 2007, 56(10): 5580-5584. doi: 10.7498/aps.56.5580
    [10] 荆宏星, 李元成, 夏丽莉. 变质量单面完整约束系统Lie对称性的摄动与广义Hojman型绝热不变量. 物理学报, 2007, 56(6): 3043-3049. doi: 10.7498/aps.56.3043
    [11] 夏丽莉, 李元成. 相空间中非完整可控力学系统的对称性摄动与绝热不变量. 物理学报, 2007, 56(11): 6183-6187. doi: 10.7498/aps.56.6183
    [12] 张 毅. 事件空间中完整系统的Lie对称性与绝热不变量. 物理学报, 2007, 56(6): 3054-3059. doi: 10.7498/aps.56.3054
    [13] 张 毅, 范存新, 梅凤翔. Lagrange系统对称性的摄动与Hojman型绝热不变量. 物理学报, 2006, 55(7): 3237-3240. doi: 10.7498/aps.55.3237
    [14] 吴惠彬, 梅凤翔. Lagrange系统在施加陀螺力后的对称性. 物理学报, 2005, 54(6): 2474-2477. doi: 10.7498/aps.54.2474
    [15] 郑世旺, 傅景礼, 李显辉. 机电动力系统的动量依赖对称性和非Noether守恒量. 物理学报, 2005, 54(12): 5511-5516. doi: 10.7498/aps.54.5511
    [16] 罗绍凯. 奇异系统Hamilton正则方程的Mei对称性、Noether对称性和Lie对称性. 物理学报, 2004, 53(1): 5-10. doi: 10.7498/aps.53.5
    [17] 张 毅, 梅凤翔. 广义经典力学系统对称性的摄动与绝热不变量. 物理学报, 2003, 52(10): 2368-2372. doi: 10.7498/aps.52.2368
    [18] 张毅. 约束哈密顿系统在相空间中的精确不变量与绝热不变量. 物理学报, 2002, 51(11): 2417-2422. doi: 10.7498/aps.51.2417
    [19] 张毅. 单面约束Birkhoff系统对称性的摄动与绝热不变量. 物理学报, 2002, 51(8): 1666-1670. doi: 10.7498/aps.51.1666
    [20] 乔永芬, 李仁杰, 赵淑红. 高维增广相空间中广义力学系统的对称性和不变量. 物理学报, 2001, 50(5): 811-815. doi: 10.7498/aps.50.811
计量
  • 文章访问数:  2791
  • PDF下载量:  181
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-26
  • 修回日期:  2023-10-13
  • 上网日期:  2023-11-17
  • 刊出日期:  2024-02-20

/

返回文章
返回