搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

运动晶界与调幅分解相互作用过程的相场法研究

郭灿 赵玉平 邓英远 张忠明 徐春杰

引用本文:
Citation:

运动晶界与调幅分解相互作用过程的相场法研究

郭灿, 赵玉平, 邓英远, 张忠明, 徐春杰

A phase-field study on interaction process of moving grain boundary and spinodal decomposition

Guo Can, Zhao Yu-Ping, Deng Ying-Yuan, Zhang Zhong-Ming, Xu Chun-Jie
PDF
HTML
导出引用
  • 晶界控制的调幅分解对材料微观组织及性能有着十分重要的影响, 然而, 限于研究手段, 我们对晶界与调幅分解间相互作用过程及机制的认识仍存在不足. 本文采用相场法模拟了实际多晶体系的调幅分解过程, 研究了晶界曲率及晶界处原子扩散速率对调幅组织形貌的影响, 并讨论了调幅分解与晶界迁移的相互作用关系. 结果表明, 晶界能够促进并调制调幅组织形貌, 晶界附近为各向异性调幅组织, 晶粒内部为各向同性双连通调幅组织; 随着晶界曲率增大, 调幅组织由垂直晶界转变为平行晶界; 调幅分解速度随着晶界原子扩散系数的增大而增大, 而调幅分解过程中的晶界迁移速度则随着晶界原子扩散系数的增大表现为先减小后增大; 三维模拟结果与二维模拟结果相一致.
    The grain boundary-directed spinodal decomposition has a substantial effect on the microstructure and properties of polycrystalline materials. However, due to the fact that the spinodal decomposition is usually too fast to be captured in experiments, our understanding of the grain boundary-directed spinodal decomposition process is still very limited. In this work, we simulate the spinodal decomposition process of a polycrystalline system by the phase-field model, check the influences of the curvature and the atom diffusion constant inside the grain boundary (Mt) on the phase decomposition patterns, and discuss the interaction between the moving grain boundaries and spinodal decomposition. The simulation results indicate that the velocity of spinodal decomposition near the grain boundary is faster, and the spinodal morphology at the grain boundary presents the anisotropic bicontinuous microstructures different from the isotropic continuous microstructures in the bulk phase. Further, we find that the spinodal pattern is parallel to the grain boundaries with larger curvatures, and it will perpendicular to the grain boundaries with smaller curvatures. We also find that the spinodal decomposition velocity increases with the augment of Mt , while the grain boundary migration velocity will first decrease and then increase with the augment of Mt under the effect of spinodal decomposition. Finally, we simulate the spinodal decomposition process of two-grain system in three dimensions, and we obtain the results consistent with the two-dimensional simulations.
      通信作者: 郭灿, cguo@xaut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51801154)、陕西省高等学校学科创新引智基地项目(批准号: S2021-ZC-GXYZ-0011)和西安市高校重大科技创新平台及科技成果就地转化项目(批准号: 20GXSF0003)资助的课题.
      Corresponding author: Guo Can, cguo@xaut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51801154), the Higher Education Institution Discipline Innovation and Intelligence Base of Shaanxi Province, China (Grant No. S2021-ZC-GXYZ-0011), and the Projects of Major Innovation Platforms for Scientific and Technological and Local Transformation of Scientific and Technological Achievements of Xi'an, China (Grant No. 20GXSF0003).
    [1]

    Cahn J W, Hilliard J E 1958 J. Chem. Phys. 28 258Google Scholar

    [2]

    Liu X, Li R, Lu Y, Zhang Y, Yu P, Li G 2021 Mater. Sci. Eng. A 822 141674Google Scholar

    [3]

    Peng Y, Wang N 2020 J. Mater. Sci. Technol. 38 64Google Scholar

    [4]

    Das A, Basak C B 2018 Philos. Mag. 98 3007Google Scholar

    [5]

    Rajeshwari K S, Sankaran S, Hari Kumar K C, Rösner H, Peterlechner M, Esin V A, Divinski S, Wilde G 2020 Acta Mater. 195 501Google Scholar

    [6]

    Grönhagen K, Ågren J, Odén M 2015 Scr. Mater. 95 42Google Scholar

    [7]

    Wise S M, Kim J S, Johnson W C 2005 Thin Solid Films 473 151Google Scholar

    [8]

    Li L, Li Z, Kwiatkowski da Silva A, Peng Z, Zhao H, Gault B, Raabe D 2019 Acta Mater. 178 1Google Scholar

    [9]

    Liu J, Wu X, Lennard W N, Landheer D, Dharma-Wardana M W C 2010 J. Appl. Phys. 107 123510Google Scholar

    [10]

    Li Y S, Li S X, Zhang T Y 2009 J. Nucl. Mater. 395 120Google Scholar

    [11]

    Li Y, Katsui H, Goto T 2017 Mater. Today:Proc. 4 11449Google Scholar

    [12]

    Deng Y Y, Guo C, Wang J C, Liu Q, Zhao Y P, Yang Q 2021 Chin. Phys. B 30 088101Google Scholar

    [13]

    孙佳, 李学雄, 张金虎, 王刚, 杨梅, 王皞, 徐东生 2020 金属学报 56 1113

    Sun J, Li X X, Zhang J H, Wang G, Yang M, Wang H, Xu D S 2020 Acta Metall. Sin. 56 1113

    [14]

    王锦程, 郭春文, 李俊杰, 王志军 2018 金属学报 54 657Google Scholar

    Wang J C, Guo C W, Li J J, Wang Z J 2018 Acta Metall. Sin. 54 657Google Scholar

    [15]

    Guo C, Kang C, Xu C, Wang J 2021 Comput. Mater. Sci. 196 110536Google Scholar

    [16]

    Guo C, Wang J, Li J, Wang Z, Huang Y, Gu J, Lin X 2018 Acta Mater. 145 175Google Scholar

    [17]

    Tu Z, Zhou J, Tong L, Guo Z 2020 J. Cryst. Growth 532 125439Google Scholar

    [18]

    祁科武, 赵宇宏, 田晓林, 彭敦维, 孙远洋, 侯华 2020 物理学报 69 140504Google Scholar

    Qi K W, Zhao Y H, Tian X L, Peng D W, Sun Y Y, Hou H 2020 Acta Phys. Sin. 69 140504Google Scholar

    [19]

    Zhu C S, Hu Z, Wang K M 2020 Chin. Phys. B 29 034702Google Scholar

    [20]

    Ramanarayan H, Abinandanan T A 2003 Acta Mater. 51 4761Google Scholar

    [21]

    Razumov I K, Gornostyrev Y N, Yermakov A Y 2007 J. Alloys Compd. 434–435 535

    [22]

    Yang T, Chen Z, Zhang J, Dong W P, Wu L 2012 Chin. Phys. Lett. 29 078103

    [23]

    Seol D J, Hu S Y, Li Y L, Shen J, Oh K H, Chen L Q 2003 Acta Mater. 51 5173Google Scholar

    [24]

    Lee J, Chang K 2019 Comput. Mater. Sci. 169 109088Google Scholar

    [25]

    Guo C, Wang J, Wang Z, Li J, Guo Y, Huang Y 2016 Soft Matter 12 4666Google Scholar

    [26]

    Kwiatkowski da Silva A, Kamachali R D, Ponge D, Gault B, Neugebauer J, Raabe D 2019 Acta Mater. 168 109Google Scholar

    [27]

    郭耀麟 2015 博士学位论文 (西安: 西北工业大学)

    Guo Y L 2015 Ph. D. Dissertation (Xi'an: Northwestern Polytechnical University) (in Chinese)

  • 图 1  不同时刻多晶粒调幅分解过程 (a) t = 0; (b) t = 40; (c) t = 100; (d) t = 240; (e) t = 705; (f) t = 1805. 图中白色线条为晶界, 蓝色与红色区域分别代表相分离后的α相和β相

    Fig. 1.  The snapshots of the spinodal decomposition process of a polycrystalline system: (a) t = 0; (b) t = 40; (c) t = 100; (d) t = 240; (e) t = 705; (f) t = 1805. Note, the white line is the grain boundary, blue and red regions represent α and β phases, respectively.

    图 2  不同初始曲率半径条件下的调幅分解过程 (a) r = 30; (b) r = 60; (c) r = 70

    Fig. 2.  Snapshots of the spinodal decomposition processes with different radius of curvatures: (a) r = 30; (b) r = 70; (c) r = 70.

    图 3  初始晶粒半径为30, 晶界原子扩散常数Mt = 5000时的调幅分解过程 (a) t = 0; (b) t = 10; (c) t = 36; (d) t = 41; (e) t = 1062; (f) t = 2008

    Fig. 3.  The snapshots of the spinodal decomposition processes with initial r = 30 (radius of curvature) and Mt = 5000 (the diffusional constant inside the grain boundary): (a) t = 0; (b) t = 10; (c) t = 36; (d) t = 41; (e) t = 1062; (f) t = 2008.

    图 4  不同Mt条件下晶界迁移速率(V)与晶界半径倒数(1/r)间的关系曲线

    Fig. 4.  The grain boundary migration velocity (V) versus the grain boundary curvature (1/r) with different Mt.

    图 5  不同扩散系数(Mt)条件下穿过曲率中心某直线上的成分场随时间演化曲线, 图中红色曲线代表中心晶粒成分场, 黑色曲线代表外部晶粒成分场

    Fig. 5.  Temporal evolution of the composition fields along the line that across the center of the grain with different initial Mt, where the red and black lines represent the composition field of central grain and external grain, respectively.

    图 6  中心晶粒半径为35, 不同Mt条件下双晶体系调幅分解过程 (a) Mt = 5000; (b) Mt = 500. 其中, 每组图片中上一行为三维视图, 第二行为x = 40Δx处的二维视图, 灰色球面为晶界

    Fig. 6.  Snapshots of the spinodal decomposition processes with different Mt for r = 35: (a) Mt = 5000; (b) Mt = 500. Where the 5 figures in the upper row of Fig. 6(a) and Fig. 6(b) are the time evolution of the composition field in three-dimension, the 5 figures in the lower row of Fig. 6(a) and Fig. 6(b) are the two-dimensional cross-sectional view of the composition field at x = 40Δx, and the gray sphere is the grain boundary.

  • [1]

    Cahn J W, Hilliard J E 1958 J. Chem. Phys. 28 258Google Scholar

    [2]

    Liu X, Li R, Lu Y, Zhang Y, Yu P, Li G 2021 Mater. Sci. Eng. A 822 141674Google Scholar

    [3]

    Peng Y, Wang N 2020 J. Mater. Sci. Technol. 38 64Google Scholar

    [4]

    Das A, Basak C B 2018 Philos. Mag. 98 3007Google Scholar

    [5]

    Rajeshwari K S, Sankaran S, Hari Kumar K C, Rösner H, Peterlechner M, Esin V A, Divinski S, Wilde G 2020 Acta Mater. 195 501Google Scholar

    [6]

    Grönhagen K, Ågren J, Odén M 2015 Scr. Mater. 95 42Google Scholar

    [7]

    Wise S M, Kim J S, Johnson W C 2005 Thin Solid Films 473 151Google Scholar

    [8]

    Li L, Li Z, Kwiatkowski da Silva A, Peng Z, Zhao H, Gault B, Raabe D 2019 Acta Mater. 178 1Google Scholar

    [9]

    Liu J, Wu X, Lennard W N, Landheer D, Dharma-Wardana M W C 2010 J. Appl. Phys. 107 123510Google Scholar

    [10]

    Li Y S, Li S X, Zhang T Y 2009 J. Nucl. Mater. 395 120Google Scholar

    [11]

    Li Y, Katsui H, Goto T 2017 Mater. Today:Proc. 4 11449Google Scholar

    [12]

    Deng Y Y, Guo C, Wang J C, Liu Q, Zhao Y P, Yang Q 2021 Chin. Phys. B 30 088101Google Scholar

    [13]

    孙佳, 李学雄, 张金虎, 王刚, 杨梅, 王皞, 徐东生 2020 金属学报 56 1113

    Sun J, Li X X, Zhang J H, Wang G, Yang M, Wang H, Xu D S 2020 Acta Metall. Sin. 56 1113

    [14]

    王锦程, 郭春文, 李俊杰, 王志军 2018 金属学报 54 657Google Scholar

    Wang J C, Guo C W, Li J J, Wang Z J 2018 Acta Metall. Sin. 54 657Google Scholar

    [15]

    Guo C, Kang C, Xu C, Wang J 2021 Comput. Mater. Sci. 196 110536Google Scholar

    [16]

    Guo C, Wang J, Li J, Wang Z, Huang Y, Gu J, Lin X 2018 Acta Mater. 145 175Google Scholar

    [17]

    Tu Z, Zhou J, Tong L, Guo Z 2020 J. Cryst. Growth 532 125439Google Scholar

    [18]

    祁科武, 赵宇宏, 田晓林, 彭敦维, 孙远洋, 侯华 2020 物理学报 69 140504Google Scholar

    Qi K W, Zhao Y H, Tian X L, Peng D W, Sun Y Y, Hou H 2020 Acta Phys. Sin. 69 140504Google Scholar

    [19]

    Zhu C S, Hu Z, Wang K M 2020 Chin. Phys. B 29 034702Google Scholar

    [20]

    Ramanarayan H, Abinandanan T A 2003 Acta Mater. 51 4761Google Scholar

    [21]

    Razumov I K, Gornostyrev Y N, Yermakov A Y 2007 J. Alloys Compd. 434–435 535

    [22]

    Yang T, Chen Z, Zhang J, Dong W P, Wu L 2012 Chin. Phys. Lett. 29 078103

    [23]

    Seol D J, Hu S Y, Li Y L, Shen J, Oh K H, Chen L Q 2003 Acta Mater. 51 5173Google Scholar

    [24]

    Lee J, Chang K 2019 Comput. Mater. Sci. 169 109088Google Scholar

    [25]

    Guo C, Wang J, Wang Z, Li J, Guo Y, Huang Y 2016 Soft Matter 12 4666Google Scholar

    [26]

    Kwiatkowski da Silva A, Kamachali R D, Ponge D, Gault B, Neugebauer J, Raabe D 2019 Acta Mater. 168 109Google Scholar

    [27]

    郭耀麟 2015 博士学位论文 (西安: 西北工业大学)

    Guo Y L 2015 Ph. D. Dissertation (Xi'an: Northwestern Polytechnical University) (in Chinese)

  • [1] 张学阳, 胡望宇, 戴雄英. 冲击下铁的各向异性对晶界附近相变的影响. 物理学报, 2024, 73(3): 036201. doi: 10.7498/aps.73.20231081
    [2] 夏文强, 赵彦, 刘振智, 鲁晓刚. 应变诱发四方相小角度对称倾侧晶界位错反应的晶体相场模拟. 物理学报, 2022, 71(9): 096102. doi: 10.7498/aps.71.20212278
    [3] 陈伟龙, 郭榕榕, 仝钰申, 刘莉莉, 周圣岚, 林金海. 亚禁带光照对CdZnTe晶体中晶界电场分布的影响. 物理学报, 2022, 71(22): 226101. doi: 10.7498/aps.71.20220896
    [4] 祁科武, 赵宇宏, 田晓林, 彭敦维, 孙远洋, 侯华. 取向角对小角度非对称倾斜晶界位错运动影响的晶体相场模拟. 物理学报, 2020, 69(14): 140504. doi: 10.7498/aps.69.20200133
    [5] 周良付, 张婧, 何文豪, 王栋, 苏雪, 杨冬燕, 李玉红. 氦泡在bcc钨中晶界处成核长大的分子动力学模拟. 物理学报, 2020, 69(4): 046103. doi: 10.7498/aps.69.20191069
    [6] 祁科武, 赵宇宏, 郭慧俊, 田晓林, 侯华. 温度对小角度对称倾斜晶界位错运动影响的晶体相场模拟. 物理学报, 2019, 68(17): 170504. doi: 10.7498/aps.68.20190051
    [7] 孙丽俊, 代飞, 罗江山, 易勇, 杨蒙生, 张继成, 黎军, 雷海乐. 铝纳米晶的低温导电特性研究. 物理学报, 2016, 65(13): 137303. doi: 10.7498/aps.65.137303
    [8] 王海燕, 高雪云, 任慧平, 张红伟, 谭会杰. 稀土La在-Fe中占位倾向及对晶界影响的第一性原理研究. 物理学报, 2014, 63(14): 148101. doi: 10.7498/aps.63.148101
    [9] 李尚洁, 陈铮, 员江娟, 张静. 晶体相场法研究晶粒缩小过程中的位错湮灭与晶界迁移. 物理学报, 2014, 63(12): 128101. doi: 10.7498/aps.63.128101
    [10] 龙建, 王诏玉, 赵宇龙, 龙清华, 杨涛, 陈铮. 不同对称性下晶界结构演化及微观机理的晶体相场法研究. 物理学报, 2013, 62(21): 218101. doi: 10.7498/aps.62.218101
    [11] 任群, 王楠, 张莉, 王建元, 郑亚萍, 姚文静. 调幅分解及形核对相分离作用机理研究. 物理学报, 2012, 61(19): 196401. doi: 10.7498/aps.61.196401
    [12] 郑宗文, 徐庭栋, 王凯, 邵冲. 晶界滞弹性弛豫理论的现代进展. 物理学报, 2012, 61(24): 246202. doi: 10.7498/aps.61.246202
    [13] 马文, 祝文军, 陈开果, 经福谦. 晶界对纳米多晶铝中冲击波阵面结构影响的分子动力学研究. 物理学报, 2011, 60(1): 016107. doi: 10.7498/aps.60.016107
    [14] 王晓中, 林理彬, 何捷, 陈军. 第一性原理方法研究He掺杂Al晶界力学性质. 物理学报, 2011, 60(7): 077104. doi: 10.7498/aps.60.077104
    [15] 陈贤淼, 宋申华. 高温塑性变形引起的P非平衡晶界偏聚. 物理学报, 2009, 58(13): 183-S188. doi: 10.7498/aps.58.183
    [16] 刘贵立, 李荣德. ZA27合金晶界处铁、稀土元素的有序化与交互作用. 物理学报, 2006, 55(2): 776-779. doi: 10.7498/aps.55.776
    [17] 李培刚, 雷 鸣, 唐为华, 宋朋云, 陈晋平, 李玲红. 晶界对庞磁电阻颗粒薄膜的磁学和输运性能的影响. 物理学报, 2006, 55(5): 2328-2332. doi: 10.7498/aps.55.2328
    [18] 刘贵立, 李荣德. ZA27合金中稀土及铁的晶界偏聚与交互作用. 物理学报, 2004, 53(10): 3482-3486. doi: 10.7498/aps.53.3482
    [19] 张 林, 王绍青, 叶恒强. 大角度Cu晶界在升温、急冷条件下晶界结构的分子动力学研究. 物理学报, 2004, 53(8): 2497-2502. doi: 10.7498/aps.53.2497
    [20] 文玉华, 朱 弢, 曹立霞, 王崇愚. 镍基单晶超合金Ni/Ni3Al晶界的分子动力学模拟. 物理学报, 2003, 52(10): 2520-2524. doi: 10.7498/aps.52.2520
计量
  • 文章访问数:  4979
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-24
  • 修回日期:  2021-11-16
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-04-05

/

返回文章
返回