搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

上转换充能的动力学研究—以Mn2+掺杂的长余辉材料为例

李辰琳 赵习宇 郭彤 刘峰 王笑军 廖川 张家骅

引用本文:
Citation:

上转换充能的动力学研究—以Mn2+掺杂的长余辉材料为例

李辰琳, 赵习宇, 郭彤, 刘峰, 王笑军, 廖川, 张家骅

Up-conversion charging dynamics exampled by Mn2+-activated persistent phosphor

Li Chen-Lin, Zhao Xi-Yu, Guo Tong, Liu Feng, Wang Xiao-Jun, Liao Chuan, Zhang Jia-Hua
PDF
HTML
导出引用
  • 无机长余辉材料是一种储能释光材料, 其储能特性源于材料内部的电子或空穴陷阱在外界激发光作用下的填充. 通过上转换激发的方式对长余辉材料充能是学者们在近几年提出的一种新颖的激发充能机制. 这种两步离化的激发设计使长余辉材料的充能摆脱了高能离化光的限制, 将充能激发波长扩展至可见光甚至红外光区, 为长余辉技术在生物成像等领域的应用提供了原位激发的选择. 目前, 学者们对上转换充能的研究主要集中在材料的开发和激发路径的设计等方面, 而对充能本身的物理过程知之甚少. 本文通过构建分析上转换充能的速率方程, 预测了激发辐照光对陷阱的光排空影响. 在此基础上, 选择 450 nm 激光激发的 LaMgGa11O19:Mn2+ 长余辉材料体系为模板, 分析了激发光剂量与材料热释光强度的函数关系, 揭示了光辐照陷阱填充与光排空之间的动力学竞争. 此外, 相似的充能动力学规律也适用于其他具有上转换充能性质的长余辉材料.
    Persistent phosphor as a kind of light-emitting material can store excitation energy in the so-called traps, and then persistently release the energy in the form of light emission after the end of excitation. This emission is called persistent luminescence. Much attention has been paid to optimizing the emission performance of persistent phosphors, including emission wavelength and persistent time. However, research on the excitation for charging persistent phosphors is relatively lacking. To acquire the persistent luminescence effectively, the traps need to be filled typically by ionizing irradiation. That is, high-energy light (such as ultraviolet light) is a general requirement for charging the persistent phosphors. Taking into account the fact that low-energy illumination (e.g. visible or infrared light) is much more suitable and less harmful than ultraviolet light for some practical applications, taking advantage of the low-energy light excitation is therefore an urgent issue to be solved in the persistent luminescence area. Several low-energy excitation approaches have been reported, in which up-conversion charging (UCC) is a promising candidate for charging phosphors using low-energy excitation light sources. The definition of UCC is as follows: UCC is a non-linear excitation for storage phosphors, in which the traps are typically filled via a two-step ionization mechanism. Prior research on the UCC has focused primarily on the demonstration of two-step ionization and the associated trapping properties. Recently, researchers have realized that the excitation light may release some trapped electrons while filling the traps (i.e. excitation-light stimulated detrapping). Competition between the trapping and detrapping during the UCC has been roughly described on the assumption that the illumination dose is in a certain range and the effect of ambient-temperature stimulated detrapping is negligible. Despite the initial progress, the exact effect of detrapping on the UCC process needs to be further explored. Here we demonstrate the effect of detrapping on UCC dynamics by a rate equation approach. Accordingly, taking LaMgGa11O19:Mn2+ phosphor illuminated by a 450 nm laser for example, we measure its thermoluminescence. Our measurements reveal that the competition between the trapping and detrapping depends both on illumination power and on illumination duration. The experimental results are consistent well with the theoretical predictions, thereby offering a new insight into the understanding of UCC. In addition, the experimental demonstration on the LaMgGa11O19:Mn2+ phosphor allows us to explore the generality of the present UCC model. Accordingly, we expect some existing phosphors can now be revisited.
      通信作者: 刘峰, fengliu@nenu.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 11774046, 11874055) 和吉林省科技发展计划国际科技合作项目 (批准号: 20180414082GH) 资助的课题
      Corresponding author: Liu Feng, fengliu@nenu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774046, 11874055) and the International Joint Research Program of Technology Development of Jilin Province, China (Grant No. 20180414082GH)
    [1]

    Bunzli J C, Pecharsky V K 2015 Handbook on the Physics and Chemistry of Rare Earths (Vol. 48) (Amsterdam: North-Holland)

    [2]

    Li Y, Gecevicius M, Qiu J R 2016 Chem. Soc. Rev. 45 2090Google Scholar

    [3]

    Xu J, Tanabe S 2019 J. Lumin. 205 581Google Scholar

    [4]

    Yu N Y, Liu F, Li X F, Pan Z W 2009 Appl. Phys. Lett. 95 231110Google Scholar

    [5]

    Kamimura S, Xu C N, Yamada H, Terasaki N, Masayoshi F 2014 Jpn. J. Appl. Phys. 53 092403Google Scholar

    [6]

    Liu F, Liang Y J, Chen Y F, Pan Z W 2016 Adv. Opt. Mater. 4 562Google Scholar

    [7]

    王鹏久, 徐旭辉, 邱建备, 周大成, 刘雪娥, 程帅 2014 物理学报 63 077804Google Scholar

    Wang P J, Xu X H, Qiu J B, Zhou D C, Liu X E, Cheng S 2014 Acta Phys. Sin. 63 077804Google Scholar

    [8]

    刘盛意, 张金苏, 孙佳石, 陈宝玖, 李香萍, 徐赛, 程丽红 2019 物理学报 68 053301Google Scholar

    Liu S Y, Zhang J S, Sun J S, Chen B J, Li X P, Xu S, Cheng L H 2019 Acta Phys. Sin. 68 053301Google Scholar

    [9]

    Sun H X, Gao Q Q, Wang A Y, Liu Y C, Wang X J, Liu F 2020 Opt. Mater. Express 10 1296Google Scholar

    [10]

    Rodrigues L C V, Holsa J, Lastusaari M, Felinto M C F C, Brito H F 2014 J. Mater. Chem. C 2 1612Google Scholar

    [11]

    Bos A J J, Van Duijvenvoorde RM, Van der Kolk E, Drozdowski W, Dorenbos P 2011 J. Lumin. 131 1465Google Scholar

    [12]

    Pan Z W, Lu Y Y, Liu F 2012 Nat. Mater. 11 58Google Scholar

    [13]

    Malkamaki M, Bos A J J, Dorenbos P, Lastusaari M, Rodrigues L C V, Swart H C, Holsa J 2020 Physica B 593 411947Google Scholar

    [14]

    De Chermont Q L M, Chaneac C, Seguin J, Pelle F, Maitrejean S, Jolivet J P, Gourier D, Bessodes M, Scherman D 2007 Proc. Natl. Acad. Sci. U. S. A. 104 9266Google Scholar

    [15]

    Liu F, Yan W Z, Chuang Y J, Zhen Z P, Xie J, Pan Z W 2013 Sci. Rep. 3 1554Google Scholar

    [16]

    Liu F, Chen Y F, Liang Y J, Pan Z W 2016 Opt. Lett. 41 954Google Scholar

    [17]

    Liu F, Liang Y J, Pan Z W 2014 Phys. Rev. Lett. 113 177401Google Scholar

    [18]

    Chen Y F, Liu F, Liang Y J, Wang X L, Wang X J, Pan Z W 2018 J. Mater. Chem. C 6 8003Google Scholar

    [19]

    Gao Q Q, Li C L, Liu Y C, Zhang J H, Wang X J, Liu F 2020 J. Mater. Chem. C 8 6988Google Scholar

    [20]

    Yan S Y, Gao Q Q, Zhao X Y, Wang A Y, Liu Y C, Zhang J H, Wang X J, Liu F 2020 J. Lumin. 226 117427Google Scholar

    [21]

    Yan S Y, Liu F, Zhang J H, Wang X J, Liu Y C 2020 Phys. Rev. Appl. 13 044051Google Scholar

    [22]

    Pollnau M, Gamelin D R, Lüthi S R, Güdel H U 2000 Phys. Rev. B 61 3337Google Scholar

    [23]

    Verstegen J M P J 1973 J. Solid State. Chem. 7 468Google Scholar

    [24]

    Wang X J, Jia D, Yen W M 2003 J. Lumin. 102−103 34

    [25]

    Liu F, Meltzer R S, Li X, Budai J D, Chen Y S, Pan Z W 2014 Sci. Rep. 4 7101

    [26]

    Yang X B, Xu J, Li H J, Bi Q Y, Cheng Y, Su L B, Tang Q 2010 Chin. Phys. B 19 047803Google Scholar

    [27]

    Bos A J J 2017 Materials 10 1357Google Scholar

  • 图 1  考虑了光激励排空影响的上转换充能动力学示意图

    Fig. 1.  Schematic illustration of up-conversion charging dynamics. The population in traps depends on the competition between the trapping and excitation-light detrapping.

    图 2  LaMgGa11O19:Mn2+ 材料的上转换充能余辉发射谱; (b) 上转换充能及伴随的余辉发射路径示意图

    Fig. 2.  (a) Up-conversion charging induced persistent luminescence (UCC-PersL) emission spectra of LaMgGa11O19:Mn2+; (b) schematic representation of the UCC-PersL process.

    图 3  (a) 通过固定辐照时长 (10 s) 的上转换充能后, LaMgGa11O19:Mn2+ 材料的热释光谱 (450 nm激光的辐照功率密度分别为0.05, 0.1, 0.15, 0.3, 0.5, 0.75, 1.5, 3, 6 W·cm–2); (b) 热释光积分强度 I 随辐照功率密度 P 的变化及 I-P 函数拟合

    Fig. 3.  (a) Thermoluminescence curves of LaMgGa11O19:Mn2+ recorded after 450 nm laser illumination with different power densities but a fixed exposure duration (10 s); (b) thermoluminescence intensity (I) is plotted against the excitation power density (P). The straight line is a quadratic fit of the data.

    图 4  (a) 通过固定辐照剂量 (3 W s cm–2) 的上转换充能后, LaMgGa11O19:Mn2+ 材料的热释光谱 (450 nm激光的辐照功率密度分别为: 0.05, 0.1, 0.15, 0.3, 0.5, 0.75, 1.5, 3, 6 W cm–2); (b) 热释光积分强度 I 随辐照功率密度 P 的变化及 IP 函数拟合

    Fig. 4.  (a) Thermoluminescence curves of LaMgGa11O19:Mn2+ recorded after 450 nm laser illumination with different power densities but a fixed illumination dose (3 W s cm–2). (b) The thermoluminescence intensity (I) is plotted versus the excitation power density (P). The straight line is a fit of the data.

    图 5  考虑了光激励排空和其他激励排空影响的上转换充能动力学示意图

    Fig. 5.  Schematic illustration of up-conversion charging dynamics. Besides the excitation light, the trapped electrons may be liberated by other stimulus during the up-conversion charging.

  • [1]

    Bunzli J C, Pecharsky V K 2015 Handbook on the Physics and Chemistry of Rare Earths (Vol. 48) (Amsterdam: North-Holland)

    [2]

    Li Y, Gecevicius M, Qiu J R 2016 Chem. Soc. Rev. 45 2090Google Scholar

    [3]

    Xu J, Tanabe S 2019 J. Lumin. 205 581Google Scholar

    [4]

    Yu N Y, Liu F, Li X F, Pan Z W 2009 Appl. Phys. Lett. 95 231110Google Scholar

    [5]

    Kamimura S, Xu C N, Yamada H, Terasaki N, Masayoshi F 2014 Jpn. J. Appl. Phys. 53 092403Google Scholar

    [6]

    Liu F, Liang Y J, Chen Y F, Pan Z W 2016 Adv. Opt. Mater. 4 562Google Scholar

    [7]

    王鹏久, 徐旭辉, 邱建备, 周大成, 刘雪娥, 程帅 2014 物理学报 63 077804Google Scholar

    Wang P J, Xu X H, Qiu J B, Zhou D C, Liu X E, Cheng S 2014 Acta Phys. Sin. 63 077804Google Scholar

    [8]

    刘盛意, 张金苏, 孙佳石, 陈宝玖, 李香萍, 徐赛, 程丽红 2019 物理学报 68 053301Google Scholar

    Liu S Y, Zhang J S, Sun J S, Chen B J, Li X P, Xu S, Cheng L H 2019 Acta Phys. Sin. 68 053301Google Scholar

    [9]

    Sun H X, Gao Q Q, Wang A Y, Liu Y C, Wang X J, Liu F 2020 Opt. Mater. Express 10 1296Google Scholar

    [10]

    Rodrigues L C V, Holsa J, Lastusaari M, Felinto M C F C, Brito H F 2014 J. Mater. Chem. C 2 1612Google Scholar

    [11]

    Bos A J J, Van Duijvenvoorde RM, Van der Kolk E, Drozdowski W, Dorenbos P 2011 J. Lumin. 131 1465Google Scholar

    [12]

    Pan Z W, Lu Y Y, Liu F 2012 Nat. Mater. 11 58Google Scholar

    [13]

    Malkamaki M, Bos A J J, Dorenbos P, Lastusaari M, Rodrigues L C V, Swart H C, Holsa J 2020 Physica B 593 411947Google Scholar

    [14]

    De Chermont Q L M, Chaneac C, Seguin J, Pelle F, Maitrejean S, Jolivet J P, Gourier D, Bessodes M, Scherman D 2007 Proc. Natl. Acad. Sci. U. S. A. 104 9266Google Scholar

    [15]

    Liu F, Yan W Z, Chuang Y J, Zhen Z P, Xie J, Pan Z W 2013 Sci. Rep. 3 1554Google Scholar

    [16]

    Liu F, Chen Y F, Liang Y J, Pan Z W 2016 Opt. Lett. 41 954Google Scholar

    [17]

    Liu F, Liang Y J, Pan Z W 2014 Phys. Rev. Lett. 113 177401Google Scholar

    [18]

    Chen Y F, Liu F, Liang Y J, Wang X L, Wang X J, Pan Z W 2018 J. Mater. Chem. C 6 8003Google Scholar

    [19]

    Gao Q Q, Li C L, Liu Y C, Zhang J H, Wang X J, Liu F 2020 J. Mater. Chem. C 8 6988Google Scholar

    [20]

    Yan S Y, Gao Q Q, Zhao X Y, Wang A Y, Liu Y C, Zhang J H, Wang X J, Liu F 2020 J. Lumin. 226 117427Google Scholar

    [21]

    Yan S Y, Liu F, Zhang J H, Wang X J, Liu Y C 2020 Phys. Rev. Appl. 13 044051Google Scholar

    [22]

    Pollnau M, Gamelin D R, Lüthi S R, Güdel H U 2000 Phys. Rev. B 61 3337Google Scholar

    [23]

    Verstegen J M P J 1973 J. Solid State. Chem. 7 468Google Scholar

    [24]

    Wang X J, Jia D, Yen W M 2003 J. Lumin. 102−103 34

    [25]

    Liu F, Meltzer R S, Li X, Budai J D, Chen Y S, Pan Z W 2014 Sci. Rep. 4 7101

    [26]

    Yang X B, Xu J, Li H J, Bi Q Y, Cheng Y, Su L B, Tang Q 2010 Chin. Phys. B 19 047803Google Scholar

    [27]

    Bos A J J 2017 Materials 10 1357Google Scholar

  • [1] 阿热帕提·夏克尔, 王林香, 李晴, 柏云凤, 穆妮热·买买提. Tm3+, Yb3+共掺Bi2WO6上转换发光材料的制备及其温度传感性质. 物理学报, 2023, 72(6): 060701. doi: 10.7498/aps.72.20222143
    [2] 刘盛意, 张金苏, 孙佳石, 陈宝玖, 李香萍, 徐赛, 程丽红. 实验优化设计Sr2MgSi2O7:Eu2+, Dy3+的合成及长余辉特性. 物理学报, 2019, 68(5): 053301. doi: 10.7498/aps.68.20182015
    [3] 梅屹峰, 唐远河, 梅小宁, 刘汉臣, 刘骞, 余洋, 李宁远, 高恒. 基于长余辉材料的激光书写和显示. 物理学报, 2016, 65(17): 170701. doi: 10.7498/aps.65.170701
    [4] 张静, 魏巍, 高守宝, 孟庆田. H+Li2: 一个典型的释能反应体系及其含时动力学研究. 物理学报, 2015, 64(6): 063101. doi: 10.7498/aps.64.063101
    [5] 程帅, 徐旭辉, 王鹏久, 邱建备. 新型电子俘获型材料β-Sr2SiO4:Eu2+, La3+长余辉和光激励发光性能的研究. 物理学报, 2015, 64(1): 017802. doi: 10.7498/aps.64.017802
    [6] 王鹏久, 徐旭辉, 邱建备, 周大成, 刘雪娥, 程帅. 高亮度蓝绿色长余辉材料Ba4 (Si3O8)2:Eu2+, Pr3+的发光性能及其余辉机理研究. 物理学报, 2014, 63(7): 077804. doi: 10.7498/aps.63.077804
    [7] 谢伟, 王银海, 全军, 邹长伟, 梁枫, 邵乐喜. H3BO3对Y1.98O3:Eu0.01, Dy0.01红色长余辉发光材料结构和余辉性能的影响. 物理学报, 2014, 63(1): 016101. doi: 10.7498/aps.63.016101
    [8] 周化光, 林鑫, 王猛, 黄卫东. Cu固液界面能的分子动力学计算. 物理学报, 2013, 62(5): 056803. doi: 10.7498/aps.62.056803
    [9] 肖红星, 龙冲生. UO2 晶体中低密勒指数晶面表面能的分子动力学模拟. 物理学报, 2013, 62(10): 103104. doi: 10.7498/aps.62.103104
    [10] 秦青松, 马新龙, 邵宇, 杨星瑜, 盛鸿飞, 杨靖忠, 尹瑶, 张加驰. 新型光存储材料Sr2SnO4: Tb3+, Li+ 的合成及其红外上转换光激励发光性能的研究. 物理学报, 2012, 61(9): 097804. doi: 10.7498/aps.61.097804
    [11] 李堂刚, 刘素文, 王恩华, 宋灵君. Y2O3:Yb3+,Tm3+纳米材料的可见及紫外上转换发光. 物理学报, 2011, 60(7): 073201. doi: 10.7498/aps.60.073201
    [12] 谢伟, 王银海, 胡义华, 张军, 邹长伟, 李达, 邵乐喜. Sr0.6Ba0.2Ca0.2Al2O4 ∶Eu,Dy的制备与长余辉发光性能研究. 物理学报, 2011, 60(6): 067801. doi: 10.7498/aps.60.067801
    [13] 谢伟, 王银海, 胡义华, 罗莉, 吴浩怡, 邓柳咏. Y2O3: Eu,Dy的制备与红色长余辉发光性能研究. 物理学报, 2010, 59(5): 3344-3349. doi: 10.7498/aps.59.3344
    [14] 王延, 郑志刚. 无标度网络上的传播动力学. 物理学报, 2009, 58(7): 4421-4425. doi: 10.7498/aps.58.4421
    [15] 彭亚晶, 刘玉强, 王英惠, 张淑平, 杨延强. 皮秒和纳秒单脉冲激光加热Al/NC复合纳米含能材料的热动力学分析. 物理学报, 2009, 58(1): 655-661. doi: 10.7498/aps.58.655
    [16] 董力强, 黄世华, 贾晓霞, 陈宝玖. 方波激发下Er3+上转换绿光发光动力学过程的研究. 物理学报, 2009, 58(3): 2061-2066. doi: 10.7498/aps.58.2061
    [17] 崔彩娥, 王森, 黄平. Dy含量对红色长余辉发光材料Sr3Al2O6:Eu2+,Dy3+性能的影响. 物理学报, 2009, 58(5): 3565-3571. doi: 10.7498/aps.58.3565
    [18] 李小燕, 郑志强, 冯卓宏, 刘 璟, 姜翠华, 孔令凯, 明 海. 掺铒锆钛酸铅镧陶瓷的上转换动力学分析. 物理学报, 2008, 57(5): 3244-3248. doi: 10.7498/aps.57.3244
    [19] 翁文国, 倪顺江, 申世飞, 袁宏永. 复杂网络上灾害蔓延动力学研究. 物理学报, 2007, 56(4): 1938-1943. doi: 10.7498/aps.56.1938
    [20] 程成, 孙威. 周期自洽的充氢溴化亚铜激光动力学模型. 物理学报, 1995, 44(11): 1734-1746. doi: 10.7498/aps.44.1734
计量
  • 文章访问数:  3479
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-18
  • 修回日期:  2021-11-29
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-04-05

/

返回文章
返回