搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Tm3+, Yb3+共掺Bi2WO6上转换发光材料的制备及其温度传感性质

阿热帕提·夏克尔 王林香 李晴 柏云凤 穆妮热·买买提

引用本文:
Citation:

Tm3+, Yb3+共掺Bi2WO6上转换发光材料的制备及其温度传感性质

阿热帕提·夏克尔, 王林香, 李晴, 柏云凤, 穆妮热·买买提

Preparation and temperature sensing properties of Tm3+, Yb3+ co-doped Bi2WO6 upconversion luminescent materials

Arepati Xiakeer, Wang Lin-Xiang, Li Qing, Bai Yun-Feng, Munire Maimaiti
PDF
HTML
导出引用
  • 用高温固相法制备了不同浓度的Tm3+和Yb3+共掺杂Bi2WO6上转换发光材料. 对合成粉末的微结构、上转换发射光谱, 以及材料的光学温度传感性质进行了表征和分析. X射线衍射谱结果显示, Tm3+和Yb3+离子的掺杂基本不影响Bi2WO6基质材料的正交晶系结构. 在980 nm激发下, Tm3+和Yb3+掺杂摩尔分数分别是1%和6%时获得样品中Tm3+发射强度最大. 随激发泵浦功率从199 mW增加到400 mW, 1%Tm3+, 6%Yb3+:Bi2WO6样品中Tm3+的4个发射峰强度均增强. 199—400 mW激发功率下, 样品光强I和激发功率Pn呈现线性关系. 计算该范围激发泵浦功率和Tm3+发射强度的关系, 得到Tm3+的4个发射峰478, 650, 685和705 nm分别对应n值为1.01, 1.34, 1.77和1.75, 这表明以上发射峰均源于双光子吸收. 980 nm激发(功率379 mW)下, 当温度从298 K升高到573 K时, 1%Tm3+, 6%Yb3+:Bi2WO6样品中Tm3+的热耦合能级对(3F3, 3F2)产生705 nm和685 nm处发射强度分别增加了28.4倍和31.6倍. 拟合样品中Tm3+的热耦合能级对(3F3, 3F2)的荧光强度比与温度的关系, 计算得到在298 K时, 样品最大绝对测温灵敏度为0.00254 K–1, 最大相对测温灵敏度为0.00144 K–1. 同样条件下, 拟合非热耦合能级对(3F3, 1G4)产生的705 nm和650 nm荧光强度比与温度关系, 计算得到在573 K时, 最大绝对测温灵敏度为0.167 K–1. 298 K时最大相对测温灵敏度为0.0378 K–1, 比热耦合能级(3F3, 3F2)表征温度的相对最大测温灵敏度Sr提高了26倍.
    Tm3+ and Yb3+, with different concentrations, co-doped Bi2WO6 up-conversion luminescence materials are prepared by high temperature solid state method. The microstructure, upconversion emission spectra, and optical temperature sensing properties of the synthesized powders are characterized and analyzed. The X-ray diffraction results show that the doping of Tm3+ and Yb3+ ions has little effect on the orthorhombic structure of Bi2WO6 matrix material. Under the 980 nm excitation, the maximum emission intensity of Tm3+ ions is obtained when the doping concentration of Tm3+ and Yb3+ are 1% and 6%, respectively. The intensities of four emission peaks of Tm3+ in 1%Tm3+, 6%Yb3+:Bi2WO6 sample increase with the excitation pump power increasing from 199 to 400 mW. With the excitation power of 199–400 mW, the sample light intensity I and the excitation power Pn show a linear relationship. The relationship between the excitation pump power and the emission intensity of Tm3+ in this range is investigated. The four emission peaks of Tm3+ at 478, 650, 685 and 705 nm correspond to the n values of 1.01, 1.34, 1.77 and 1.75, respectively, indicating that the above emission peaks are derived from two-photon absorption. Under 980 nm excitation (power 379 mW), when the temperature increases from 298 to 573 K, the thermal coupling energy levels of Tm3+ in 1%Tm3+, 6%Yb3+:Bi2WO6 samples produce 705 and 685 nm emission whose intensities are increased by 28.4 times and 31.6 times, respectively. The relationship between the fluorescence intensity ratio of the thermal coupling energy levels (3F3, 3F2) of Tm3+ in the sample and the temperature is fitted. The maximum absolute temperature sensitivity of the sample is 0.00254 K–1 at 298 K, and the maximum relative temperature sensitivity is 0.00144 K–1. Under the same conditions, the relationship between the fluorescence intensity ratio of 705 and 650 nm produced by the non-thermal coupling energy level pair (3F3, 1G4) and the temperature is fitted, and the maximum absolute temperature sensitivity is calculated to be 0.167 K–1 at 573 K. The maximum relative temperature sensitivity is 0.0378 K–1 at 298 K, which is 26 times higher than the relative maximum temperature sensitivity Sr of the thermal coupling level (3F3, 3F2).
      通信作者: 王林香, wanglinxiang23@126.com
    • 基金项目: 国家自然科学基金(批准号: 12164048)和新疆师范大学重点实验室项目(批准号: KWFG202204)资助的课题.
      Corresponding author: Wang Lin-Xiang, wanglinxiang23@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12164048) and the Project of Key Laboratory Of Xinjiang Normal University, China (Grant No. KWFG202204).
    [1]

    Ruiz D, Rosal B, Acebrón M, et al. 2017 Adv. Funct. Mater. 27 1604629Google Scholar

    [2]

    周慧丽, 吴锋, 张志宏, 张雁, 叶林华 2022 发光学报 43 192Google Scholar

    Zhou H L, Wu F, Zhang Z H, Zhang Y, Ye L H 2022 Chin. J. Lumin. 43 192Google Scholar

    [3]

    谢宇 2016 硕士学位论文 (沈阳: 辽宁大学)

    Xie Y 2016 M. S. Thesis (Shenyang: Liaoning University) (in Chinese)

    [4]

    吴中立, 吴红梅, 唐立丹, 李煜, 郭宇, 姚震 2017 光子学报 46 0916003Google Scholar

    Wu Z L, Wu H M, Tang L D, Li Y, Guo Y, Yao Z 2017 Acta Photonica Sin. 46 0916003Google Scholar

    [5]

    Xing J H, Shang F, Chen G H 2021 J. Non-Cryst. Solids 569 120989Google Scholar

    [6]

    Saidi K, Dammak M, Soler-Carracedo K, Martín I 2022 Dalton Trans. 51 5108Google Scholar

    [7]

    Meng M Z, Zhang R, Fa X M, et al. 2022 CrystEngComm 24 1752Google Scholar

    [8]

    Zhuang Y F, Wang D W, Yang Z P 2022 Opt. Mater. 126 112167Google Scholar

    [9]

    Zheng T, Runowski M, Stopikowska N, Skwierczyńska M, Lis S, Du P, Luo L H 2021 J. Alloys Compd. 890 161830Google Scholar

    [10]

    蒙铭周, 张瑞, 法信蒙, 杨江华, 欧俊 2021 发光学报 42 1763Google Scholar

    Meng M Z, Zhang R, Fa X M, Yang J H, Ou J 2021 Chin. J. Lumin. 42 1763Google Scholar

    [11]

    郑龙江, 李雅新, 刘海龙, 徐伟, 张志国 2013 物理学报 62 240701Google Scholar

    Zheng L J, Li Y X, Liu H L, Xu W, Zhang Z G 2013 Acta Phys. Sin. 62 240701Google Scholar

    [12]

    Wu Z L, Zhang Y P, Bao D M, Li H Q, Hou X Q, Wang J L 2022 J. Lumin. 245 118766Google Scholar

    [13]

    Lü H C, Du P, Li W P, Luo L H 2022 ACS Sustainable Chem. Eng. 10 2450Google Scholar

    [14]

    Gao Z L, Wang J R, Yu D C, Pun E Y B, Lin H 2022 Adv. Mater. Interfaces 9 2101869Google Scholar

    [15]

    张志宏, 周慧丽, 吴锋, 张雁, 叶林华 2021 发光学报 42 1872Google Scholar

    Zhang Z H, Zhou H L, Wu F, Zhang Y, Ye L H 2021 Chin. J. Lumin. 42 1872Google Scholar

    [16]

    Wang T W, Zhao S L, Lei R S, Huang L H, Xu S Q 2022 J. Non-Cryst. Solids 579 121379Google Scholar

    [17]

    Tong X, Zhou X, Tang X Z, Min Y G, Li X L, Wang W G, Qian Y N 2022 CrystEngComm 24 1407Google Scholar

    [18]

    Wang X F, Liu Q, Bu Y Y, Liu C S, Liu T, Yan X H 2015 RSC Adv. 5 86219Google Scholar

    [19]

    Liu Z H, Long S W, Zhu Y Z, Wang W J, Wang B 2020 J. Alloys Compd. 867 158986Google Scholar

    [20]

    Sun Z, Liu G F, Fu Z L, et al. 2018 Dyes Pigm. 151 287Google Scholar

  • 图 1  (a) xTm3+, 6%Yb3+:Bi2WO6的XRD图谱(x = 0.5%, 1%, 1.5%, 2%); (b) 1%Tm3+, yYb3+:Bi2WO6 (y = 4%, 6%, 8%, 10%)的XRD图谱

    Fig. 1.  (a) XRD patterns of xTm3+, 6%Yb3+:Bi2WO6 (x = 0.5%, 1%, 1.5%, 2%); (b) XRD patterns of 1%Tm3+, yYb3+:Bi2WO6 (y = 4%, 6%, 8%, 10%).

    图 2  980 nm激光(379 mW)激发下Tm3+, Yb3+共掺Bi2WO6的上转换发射光谱 (a) xTm3+, 6%Yb3+:Bi2WO6; (b) 1%Tm3+, yYb3+:Bi2WO6

    Fig. 2.  Upconversion emission spectra of Tm3+, Yb3+ co-doped Bi2WO6 excited by 980 nm laser (379 mW): (a) xTm3+, 6%Yb3+:Bi2WO6; (b) 1%Tm3+, yYb3+:Bi2WO6.

    图 3  Yb3+敏化Tm3+的上转换发光过程

    Fig. 3.  Upconversion luminescence process of Yb3+ sensitized Tm3+.

    图 4  980 nm激光激发下, 不同泵浦功率时1%Tm3+, 6%Yb3+:Bi2WO6的上转换光谱

    Fig. 4.  Upconversion spectra of 1%Tm3+, 6%Yb3+:Bi2WO6 excited by 980 nm laser at different pump powers.

    图 5  1%Tm3+, 6%Yb3+:Bi2WO6的上转换发射强度与泵浦功率的关系

    Fig. 5.  Relationship between upconversion luminescence intensity and pump power of 1%Tm3+, 6% Yb3+:Bi2WO6.

    图 6  (a) 不同温度下1%Tm3+, 6%Yb3+:Bi2WO6的上转换发射谱; (b) 红色荧光强度的变化(685, 705 nm)

    Fig. 6.  (a) Upconversion emission spectra of 1%Tm3+, 6%Yb3+:Bi2WO6 at different temperatures; (b) change of red fluorescence intensity (685, 705 nm).

    图 7  Tm3+热耦合能级对3F3/3F2产生的705和685 nm处荧光强度比与温度的关系

    Fig. 7.  Relationship between the fluorescence intensity ratio at 705 and 685 nm and the absolute temperature for 3F3/3F2 produced by Tm3+ thermal coupling energy level.

    图 8  样品的热耦合能级对3F3/3F2表征温度时对应的(a)绝对灵敏度和(b)相对测温灵敏度

    Fig. 8.  (a) Absolute temperature sensitivity and (b) relative temperature sensitivity of samples characterized by thermal coupling energy level 3F3/3F2.

    图 9  非热耦合能级对3F3/1G4产生的705和650 nm处荧光强度比与温度的关系

    Fig. 9.  Temperature dependence of fluorescence intensity ratio at 705 and 650 nm produced by 3F3/1G4 at non-thermal coupling level.

    图 10  非热耦合能级对3F3/1G4表征温度时的绝对测温灵敏度(a)和相对测温灵敏度(b)

    Fig. 10.  Absolute temperature sensitivity (a) and relative temperature sensitivity (b) of 3F3/1G4 at characterization temperature by non-thermal coupling level.

    图 11  298和573 K下RFIR1 (a)以及RFIR2 (b)稳定性测试

    Fig. 11.  Stability test of RFIR1 (a) and RFIR2 (b) at 298 and 573 K .

    表 1  800 ℃下煅烧3 h合成不同浓度Tm3+, Yb3+共掺Bi2WO6材料

    Table 1.  Synthesis of Tm3+, Yb3+ co-doped Bi2WO6 materials with different doping concentration at the sintering temperature and time of 800 ℃ and 3 h.

    Sample No.Mole fraction
    of Tm3+/%
    Mole fraction
    of Yb3+/%
    Mole fraction
    of Bi2WO6/%
    10.5693.5
    21693
    31.5692.5
    42692
    51495
    61891
    711089
    下载: 导出CSV

    表 2  不同基质材料中Tm3+温度传感性能

    Table 2.  Temperature sensing performance of Tm3+ in various host materials.

    Host materialEnergy levelTemperature range/KRelative temperature
    measurement
    sensitivity/K–1
    Ref.
    SiO2@Tm3+:NaYbF43F2, 3, 3H43H6100—700Max = 0.00054@298 K[18]
    Tm3+, Yb3+:LuYO33F2, 3F33H6223—723Max = 0.00461@516.3 K[15]
    Tm3+, Yb3+:LiNbO31G43F4, 3H43H680—260Max = 0.0125@80 K[19]
    Tm3+, Yb3+:Bi3.84W0.16O6.243H4(1), 3H4(2)3H6323—573Max = 0.00068@323 K[20]
    Li+, Tm3+, Yb3+:Bi3.84W0.16O6.243H4(1), 3H4(2)3H6323—573Max = 0.00103@323 K
    Mg2+, Tm3+, Yb3+:Bi3.84W0.16O6.243H4(1), 3H4(2)3H6323—573Max = 0.00070@323 K
    Tm3+, Yb3+:Bi2WO63F2, 33H6298—573Max = 0.00144@298 KThis work
    3F2, 33H63130.0013 K–1
    3F2, 33H63230.0012 K–1
    3F33H6 , 1G43F4298—573Max = 0.0378@298 K
    3F33H6 , G43F43130.0343 K–1
    3F33H6, 1G43F43230.0322 K–1
    下载: 导出CSV
  • [1]

    Ruiz D, Rosal B, Acebrón M, et al. 2017 Adv. Funct. Mater. 27 1604629Google Scholar

    [2]

    周慧丽, 吴锋, 张志宏, 张雁, 叶林华 2022 发光学报 43 192Google Scholar

    Zhou H L, Wu F, Zhang Z H, Zhang Y, Ye L H 2022 Chin. J. Lumin. 43 192Google Scholar

    [3]

    谢宇 2016 硕士学位论文 (沈阳: 辽宁大学)

    Xie Y 2016 M. S. Thesis (Shenyang: Liaoning University) (in Chinese)

    [4]

    吴中立, 吴红梅, 唐立丹, 李煜, 郭宇, 姚震 2017 光子学报 46 0916003Google Scholar

    Wu Z L, Wu H M, Tang L D, Li Y, Guo Y, Yao Z 2017 Acta Photonica Sin. 46 0916003Google Scholar

    [5]

    Xing J H, Shang F, Chen G H 2021 J. Non-Cryst. Solids 569 120989Google Scholar

    [6]

    Saidi K, Dammak M, Soler-Carracedo K, Martín I 2022 Dalton Trans. 51 5108Google Scholar

    [7]

    Meng M Z, Zhang R, Fa X M, et al. 2022 CrystEngComm 24 1752Google Scholar

    [8]

    Zhuang Y F, Wang D W, Yang Z P 2022 Opt. Mater. 126 112167Google Scholar

    [9]

    Zheng T, Runowski M, Stopikowska N, Skwierczyńska M, Lis S, Du P, Luo L H 2021 J. Alloys Compd. 890 161830Google Scholar

    [10]

    蒙铭周, 张瑞, 法信蒙, 杨江华, 欧俊 2021 发光学报 42 1763Google Scholar

    Meng M Z, Zhang R, Fa X M, Yang J H, Ou J 2021 Chin. J. Lumin. 42 1763Google Scholar

    [11]

    郑龙江, 李雅新, 刘海龙, 徐伟, 张志国 2013 物理学报 62 240701Google Scholar

    Zheng L J, Li Y X, Liu H L, Xu W, Zhang Z G 2013 Acta Phys. Sin. 62 240701Google Scholar

    [12]

    Wu Z L, Zhang Y P, Bao D M, Li H Q, Hou X Q, Wang J L 2022 J. Lumin. 245 118766Google Scholar

    [13]

    Lü H C, Du P, Li W P, Luo L H 2022 ACS Sustainable Chem. Eng. 10 2450Google Scholar

    [14]

    Gao Z L, Wang J R, Yu D C, Pun E Y B, Lin H 2022 Adv. Mater. Interfaces 9 2101869Google Scholar

    [15]

    张志宏, 周慧丽, 吴锋, 张雁, 叶林华 2021 发光学报 42 1872Google Scholar

    Zhang Z H, Zhou H L, Wu F, Zhang Y, Ye L H 2021 Chin. J. Lumin. 42 1872Google Scholar

    [16]

    Wang T W, Zhao S L, Lei R S, Huang L H, Xu S Q 2022 J. Non-Cryst. Solids 579 121379Google Scholar

    [17]

    Tong X, Zhou X, Tang X Z, Min Y G, Li X L, Wang W G, Qian Y N 2022 CrystEngComm 24 1407Google Scholar

    [18]

    Wang X F, Liu Q, Bu Y Y, Liu C S, Liu T, Yan X H 2015 RSC Adv. 5 86219Google Scholar

    [19]

    Liu Z H, Long S W, Zhu Y Z, Wang W J, Wang B 2020 J. Alloys Compd. 867 158986Google Scholar

    [20]

    Sun Z, Liu G F, Fu Z L, et al. 2018 Dyes Pigm. 151 287Google Scholar

  • [1] 慕立鹏, 周姚, 赵建行, 王丽, 蒋礼, 周见红. 基于阳极氧化铝模板增强NaYF4:Yb3+/Er3+上转换发光研究. 物理学报, 2024, 73(3): 037803. doi: 10.7498/aps.73.20231405
    [2] 陈癸伶, 马佳佳, 孙佳石, 张金苏, 李香萍, 徐赛, 张希珍, 程丽红, 陈宝玖. 试验优化设计GdTaO4:RE/Yb(RE=Tm, Er)荧光粉制备及上转换发光特性研究. 物理学报, 2022, 71(16): 163301. doi: 10.7498/aps.71.20220474
    [3] 高伟, 孙泽煜, 郭立淳, 韩珊珊, 陈斌辉, 韩庆艳, 严学文, 王勇凯, 刘继红, 董军. Ho3+离子掺杂单颗粒氟化物微米核壳结构的上转换发光特性. 物理学报, 2022, 71(3): 034207. doi: 10.7498/aps.71.20211719
    [4] 高伟, 孙泽煜, 郭立淳, 韩珊珊, 陈斌辉, 韩庆艳, 严学文, 王勇凯, 刘继红, 董军. Ho3+离子掺杂单颗粒氟化物微米核壳结构的上转换发光特性研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211719
    [5] 高伟, 王博扬, 韩庆艳, 韩珊珊, 程小同, 张晨雪, 孙泽煜, 刘琳, 严学文, 王勇凯, 董军. 构建垂直金纳米棒阵列增强NaYF4:Yb3+/Er3+纳米晶体的上转换发光. 物理学报, 2020, 69(18): 184213. doi: 10.7498/aps.69.20200575
    [6] 高伟, 王博扬, 孙泽煜, 高露, 张晨雪, 韩庆艳, 董军. 改变激发环境调控Ho3+离子的上转换发光特性. 物理学报, 2020, 69(3): 034207. doi: 10.7498/aps.69.20191333
    [7] 刘蓓, 陆奚建, 刘晓宁, 吴一品, 邹斌. 热注射法合成用于生物成像的核壳上转换纳米晶. 物理学报, 2020, 69(14): 147801. doi: 10.7498/aps.69.20200347
    [8] 杨健芝, 邱建备, 杨正文, 宋志国, 杨勇, 周大成. Ba5SiO4Cl6: Yb3+, Er3+, Li+荧光粉的制备及上转换发光性质研究. 物理学报, 2015, 64(13): 138101. doi: 10.7498/aps.64.138101
    [9] 毛鑫光, 王俊, 沈杰. 磁控溅射制备Er3+/Yb3+共掺杂TiO2薄膜的上转换发光特性. 物理学报, 2014, 63(8): 087803. doi: 10.7498/aps.63.087803
    [10] 郑龙江, 李雅新, 刘海龙, 徐伟, 张治国. Tm3+,Yb3+共掺钨酸钙多晶材料的上转换发光及荧光温度特性. 物理学报, 2013, 62(24): 240701. doi: 10.7498/aps.62.240701
    [11] 孙彧, 杨春晖, 姜兆华, 孟祥彬. LiNbO3和LiTaO3晶体Er3+/Yb3+掺杂水热外延层室温吸收光谱分析. 物理学报, 2012, 61(12): 127801. doi: 10.7498/aps.61.127801
    [12] 彭勇, 邢明铭, 罗昔贤, 王立强. 热解法制备KY3F10: Yb, RE(RE=Er, Ho, Tm)纳米晶及其特性研究. 物理学报, 2012, 61(13): 137201. doi: 10.7498/aps.61.137201
    [13] 王大刚, 周亚训, 王训四, 戴世勋, 沈祥, 陈飞飞, 王森. 应用于白光显示的Tm3+/Ho3+/Yb3+共掺碲酸盐玻璃上转换发光特性研究. 物理学报, 2010, 59(9): 6256-6260. doi: 10.7498/aps.59.6256
    [14] 袁宁一, 陈效双, 丁建宁, 何泽军, 李锋, 陆卫. 溶胶-凝胶制备ZnO-SiO2复合膜的量子效应和上转换发光. 物理学报, 2009, 58(4): 2649-2653. doi: 10.7498/aps.58.2649
    [15] 甘棕松, 余 华, 李妍明, 王亚楠, 陈 晖, 赵丽娟. Tm3+/Yb3+共掺氟氧硅铝酸盐玻璃陶瓷蓝色上转换发光研究. 物理学报, 2008, 57(9): 5699-5704. doi: 10.7498/aps.57.5699
    [16] 金 哲, 聂秋华, 徐铁峰, 戴世勋, 沈 祥, 章向华. Tm3+/Yb3+共掺碲铅锌镧玻璃的能量传递和上转换发光. 物理学报, 2007, 56(4): 2261-2267. doi: 10.7498/aps.56.2261
    [17] 温 磊, 张丽艳, 杨建虎, 汪国年, 陈 伟, 胡丽丽. 掺铒氟(卤)磷碲酸盐玻璃的上转换发光性能研究. 物理学报, 2006, 55(3): 1486-1490. doi: 10.7498/aps.55.1486
    [18] 温 磊, 杨建虎, 胡丽丽. 掺Er3+卤碲酸盐玻璃上转换能级寿命和发光性能研究. 物理学报, 2004, 53(12): 4378-4381. doi: 10.7498/aps.53.4378
    [19] 陈晓波, 刘凯, 庄健, 王国文, 陈创天. HoYb:YVO4的上转换发光研究. 物理学报, 2002, 51(3): 690-695. doi: 10.7498/aps.51.690
    [20] 赵丽娟, 孙聆东, 许京军, 张光寅. 用转移函数方法研究铒离子上转换发光与抽运功率的关系. 物理学报, 2001, 50(1): 63-67. doi: 10.7498/aps.50.63
计量
  • 文章访问数:  4239
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-09
  • 修回日期:  2023-01-03
  • 上网日期:  2023-02-01
  • 刊出日期:  2023-03-20

/

返回文章
返回