搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

试验优化设计GdTaO4:RE/Yb(RE=Tm, Er)荧光粉制备及上转换发光特性研究

陈癸伶 马佳佳 孙佳石 张金苏 李香萍 徐赛 张希珍 程丽红 陈宝玖

引用本文:
Citation:

试验优化设计GdTaO4:RE/Yb(RE=Tm, Er)荧光粉制备及上转换发光特性研究

陈癸伶, 马佳佳, 孙佳石, 张金苏, 李香萍, 徐赛, 张希珍, 程丽红, 陈宝玖

Preparation and upconversion luminescence properties of GdTaO4:RE/Yb(RE=Tm, Er) phosphor through experimental optimization design

Chen Gui-Ling, Ma Jia-Jia, Sun Jia-Shi, Zhang Jin-Su, Li Xiang-Ping, Xu Sai, Zhang Xi-Zhen, Cheng Li-Hong, Chen Bao-Jiu
PDF
HTML
导出引用
  • 为得到GdTaO4:RE/Yb(RE = Tm, Er)系列最大特征发光强度的上转换荧光粉, 通过试验优化设计建立了980 nm激光激发下荧光粉发光强度与其稀土掺杂浓度的回归方程, 其中Tm3+/Yb3+样品结合均匀设计和二次通用旋转组合设计, Er3+/Yb3+样品则利用均匀设计和三次正交多项式回归设计分步寻优. 检验并求解回归方程, 分析浓度与发光强度关系, 结果表明RE3+(RE = Tm, Er)和Yb3+浓度变化均对发光强度影响显著, 且在试验空间中存在光强极值点. 同条件下再次通过高温固相法制备最优发光样品. 分析最优样品X射线衍射(XRD)图谱, 结果表明样品均为纯相, Li+助熔剂掺杂会抑制反应杂相的产生, 稀土的掺入使衍射峰向高角度偏移, 且不改变峰形. 分析激发功率与发光强度的关系, 结果表明Tm3+/Yb3+共掺的蓝光发射为三光子过程, Er3+/Yb3+共掺的绿光发射为双光子过程. 分析样品温度与发光强度的关系, 各样品发光强度随温度升高而降低, 表明各样品发生温度猝灭, 由此计算了样品的激活能.
    In order to obtain the maximum characteristic intensities of the up-conversion luminescence in GdTaO4:RE/Yb(RE = Tm, Er) series, we establish the regression equation between the luminescent intensity of the phosphors and the rare earth doping concentration upon the 980 nm laser excitation based on the experimental optimization design. The Tm3+/Yb3+ doping samples are combined with the uniform design and quadratic general rotation combination design, meanwhile the Er3+/Yb3+ doping samples are optimized by the uniform design and cubic orthogonal phosphor step by step. The relationship between concentration and luminous intensity is analyzed. The results show that the changes of concentration of RE3+ (RE = Tm, Er) and Yb3+ can exert a significant effect on luminous intensity, and there exist extreme points of luminescent intensity in the test space. By solving the regression equation, we obtain the optimal doping concentration. The optimal samples are also prepared by the high-temperature solid state method. The XRD diffraction patterns of the optimal samples are analyzed. The results show that the samples are of pure phase, the doping of Li+ flux will inhibit the generation of reaction impurity phase, and the doping of rare earth will shift the diffraction peak to a high angle, with the peak shape remaining unchanged. The relationship between excitation power and luminescent intensity is analyzed. The results show that the blue light emission of Tm3+/Yb3+ co-doped phosphor is a three-photon process, and the green light emission of Er3+/Yb3+ co-coped phosphor is a two-photon process. The relationship between sample temperature and luminescent intensity is analyzed. The luminescent intensity of the sample decreases with the increase of the temperature, indicating temperature quenching. Finally, the quenching activated energy of the sample is calculated.
      通信作者: 孙佳石, sunjs@dlmu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52071048, 11774042)、集成光电子学国家重点实验室开放课题(批准号: IOSKL2019KF06)、大连市高层次人才创新支持计划(批准号: 2019RQ072)、大连海事大学研究生教育教学改革项目(批准号: YJG2021515)和中央高校基本科研业务费专项资金(批准号: 3132022194, 3132021200, 3132019338)资助的课题.
      Corresponding author: Sun Jia-Shi, sunjs@dlmu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52071048, 11774042), the Open Fund of the State Key Laboratory of Integrated Optoelectronics Granted, China (Grant No. IOSKL2019KF06), the High-level Personnel in Dalian Innovation Support Program, China (Grant No. 2019RQ072), the Postgraduate Education and Teaching Reform Project of Dalian Maritime University, China (Grant No. YJG2021515), and the Fundamental Research Funds for the Central Universities (Grant Nos. 3132022194, 3132021200, 3132019338).
    [1]

    Zhang W S, Gao Q, Zhou S, Li L J, Ma X Z 2021 Opt. Laser Technol. 114 107368

    [2]

    Chen Y Z, Peng F, Zhang Q L, Liu W P, Dou R Q, Ding S J, Luo J Q, Sun D L, Sun G H, Wang X F 2017 J. Lumin. 192 555Google Scholar

    [3]

    Dai T Y, Guo S X, Duan X M, Dou R Q, Zhang Q L 2019 Opt. Express 27 34205

    [4]

    Issler S L, Torardi C C 1995 J. Alloy Compd. 229 54Google Scholar

    [5]

    Li B, Gu Z N, Lin J H, Su M Z 2000 Mater. Res. Bull. 35 1921Google Scholar

    [6]

    Siqueira K P F, Carmo A P, Bell M J V, Dias A 2013 J. Lumin. 138 133Google Scholar

    [7]

    Brixner L H, Chen H 1983 J. Electrochem. Soc. 130 12Google Scholar

    [8]

    Roy A, Dwivedi A, Kumar D, Mishra H, Rai S B 2020 Ceram. Int. 46 24893Google Scholar

    [9]

    Roy A, Dwivedi A, Mishra H, Kumar D, Rai S B 2020 J. Alloy Compd. 821 2020

    [10]

    Sun G H, Zhang Q L, Luo J Q, Liu W P, Han S, Zheng L L, Li W M 2019 J. Lumin. 217 116831

    [11]

    任露泉 2009 试验优化设计与分析 (北京: 科学出版社) 第1页

    Ren L Q 2009 Design of Experiment and Optimization (Beijing: Science Press) p1 (in Chinese)

    [12]

    Sun J S, Shi L L, Li S W, Li J J, Li X P, Zhang J S, Cheng L H, Chen B J 2016 Mater. Res. Bull. 80 102Google Scholar

    [13]

    刘盛意, 张金苏, 孙佳石, 陈宝玖, 李香萍, 徐赛, 程丽红 2019 物理学报 68 053301Google Scholar

    Liu S Y, Zhang J S, Sun J S, Chen B J, Li X P, Xu S, Cheng L H 2019 Acta Phys. Sin. 68 053301Google Scholar

    [14]

    赵越, 杨帆, 孙佳石, 李香萍, 张金苏, 张希珍, 徐赛, 程丽红, 陈宝玖 2019 物理学报 68 213301Google Scholar

    Zhao Y, Yang F, Sun J S, Li X P, Zhang J S, Zhang X Z, Xu S, Cheng L H, Chen B J 2019 Acta Phys. Sin. 68 213301Google Scholar

    [15]

    孙佳石, 李香萍, 吴金磊, 李树伟, 石琳琳, 徐赛, 张金苏, 程丽红, 陈宝玖 2017 物理学报 66 100201Google Scholar

    Sun J S, Li X P, Wu J L, Li S W, Shi L L, Xu S, Zhang J S, Cheng L H, Chen B J 2017 Acta Phys. Sin. 66 100201Google Scholar

    [16]

    何为, 薛卫东, 唐斌 2012 优化试验设计方法及数据分析 (北京: 化学工业出版社) 第164—170页

    He W, Xue W D, Tang B 2012 The Method of Opti-mal Design of Experiment and Data Analysis (Beijing: Chemical Industry Press) pp164–170 (in Chinese)

    [17]

    杨帆 2020 硕士学位论文 (大连: 大连海事大学)

    Yang F 2020 M. S. Thesis (Dalian: Dalian Maritime University) (in Chinese)

    [18]

    任露泉 2009 回归设计及其优化 (北京: 科学出版社) 第12页

    Ren L Q 2009 Regression Design and Optimization (Beijing: Science Press) p12 (in Chinese)

    [19]

    He C, Yang K S, Liu L, Si Z J 2013 J. Rare Earths 31 790Google Scholar

    [20]

    Van U 1967 J. Electrochem. Soc. 114 1048Google Scholar

    [21]

    Tian Y, Chen B J, Hua R N, Yu N S, Liu B Q, Sun J S, Cheng L H, Zhong H Y, Li X P, Zhang J S, Tian B N, Zhong H 2012 CrystEngComm 14 1760Google Scholar

    [22]

    Tian B N, Chen B J, Tian Y, Sun J S, Li X P, Zhang J S, Zhong H Y, Cheng L H, Hua R N 2012 J. Phys. Chem. Solids 73 1314Google Scholar

    [23]

    Liu X L, Han K, Gu M, Xiao L H, Ni C, Huang S M, Liu B 2007 Solid State Commun. 142 680Google Scholar

    [24]

    肖莉红, 顾牡, 刘小林, 张睿, 刘冰洁, 徐昕 2007 光谱学与光谱分析 27 1054Google Scholar

    Xiao L H, Gu M, Liu X L, Zhang R, Liu B J, Xu X 2007 Spectrosc. Spectral Anal. 27 1054Google Scholar

    [25]

    傅尚怡, 顾牡, 刘小林, 倪晨, 刘波, 黄世明 2010 光谱学与光谱分析 30 2317Google Scholar

    Fu S Y, Gu M, Liu X L, Ni C, Liu B, Huang S M 2010 Spectrosc. Spectral Anal. 30 2317Google Scholar

    [26]

    Liu W J, Zhang W J, Liu R X, Li G J 2021 New J. Chem. 45 9818Google Scholar

    [27]

    Yu H Q, Jiang P P, Chen B J, Sun J S, Cheng L H, Li X P, Zhang J S, Xu S 2020 Appl. Phys. A 126 690Google Scholar

    [28]

    Jung K Y 2020 RSC Adv. 10 16323Google Scholar

    [29]

    张洪杰, 苏锵 1988 应用化学 3 28

    Zhang H J, Su Q 1988 Chin. J. Appl. Chem. 3 28

  • 图 1  Tm3+/Yb3+共掺浓度与蓝光发光强度关系图

    Fig. 1.  Relationship between Tm3+/Yb3+ co-doped concentration and blue emission intensity.

    图 2  (a) 旋转组合设计实验点发射光谱图(根据积分强度大小排序); (b) 序号10样品与最优样品同激发条件发射光谱图

    Fig. 2.  (a) Emission spectra of rotary unitized design experimental point (sort by integrated results); (b) emission spectra of No. 10 and optimized sample under same excitation power.

    图 3  Er3+/Yb3+共掺浓度与绿光发光强度关系图

    Fig. 3.  Relationship between Er3+/Yb3+ co-doped concentration and green emission intensity.

    图 4  (a) 正交多项式回归设计实验点发射光谱图(根据积分强度大小排序); (b) 序号20样品与最优样品同激发条件发射光谱图

    Fig. 4.  (a) Emission spectra of orthogonal polynomial regression design experimental point (sort by integrated results). (b) emission spectra of No. 20 and optimized sample under same excitation power.

    图 5  GdTaO4系列样品XRD图谱与标准JCPDS#24-0441

    Fig. 5.  XRD patterns of GdTaO4 series samples and standard JCPDS#24-0441.

    图 6  (a) Tm3+/Yb3+共掺最优样品变激发功率发射光谱图; (b) 蓝光波段和红光波段积分与工作电流拟合曲线

    Fig. 6.  (a) Emission spectra of Tm3+/Yb3+ co-doping optimized sample for variable excitation power; (b) curves fitted between the integral of the blue, red bands and the operating current.

    图 8  (a) Tm3+/Yb3+最优样品能级敏化关系图; (b) Er3+/Yb3+最优样品能级敏化关系图

    Fig. 8.  (a) Tm3+/Yb3+ optimized sample energy level sensitization chart; (b) Er3+/Yb3+ optimized sample energy level sensitization chart.

    图 7  (a) Er3+/Yb3+共掺最优样品变激发功率发射光谱图; (b) 绿波段和红光波段积分与工作电流拟合曲线

    Fig. 7.  (a) Emission spectra of Er3+/Yb3+ co-doping optimized sample for variable excitation power; (b) curves fitted between the integral of the green, red bands and the operating current.

    图 9  (a) Tm3+/Yb3+最优样品发光积分强度与温度关系; (b) Er3+/Yb3+最优样品发光积分强度与温度关系

    Fig. 9.  (a) Tm3+/Yb3+ optimized sample dependence of integrated intensity on temperature; (b) Er3+/Yb3+ optimized sample dependence of integrated intensity on temperature.

    表 1  Tm3+/Yb3+ U9(92)试验方案和积分强度

    Table 1.  Tm3+/Yb3+ U9(92) experimental design and integrated intensity.

    No.Factors${y_{\rm{b\_int} } }$/(arb. units)
    Tm3+/mol%Yb3+/mol%
    11 (0.1)4 (6.25)14548.3
    22 (0.9625)8 (13.25)40832.1
    33 (1.825)3 (4.5)16268.4
    44 (2.6875)7 (11.5)27236.0
    55 (3.55)2 (2.75)7918.2
    66 (4.4125)6 (9.75)10844.0
    77 (5.275)1 (1)2176.0
    88 (6.1375)5 (8)7370.5
    99 (7)9 (15)7673.2
    下载: 导出CSV

    表 2  Er3+/Yb3+ U11(112)试验方案和积分强度

    Table 2.  Er3+/Yb3+ U11(112) experimental design and integrated intensity.

    No.Factors${y_{\rm{g\_int}}}$/(arb. units)
    Er3+/mol%Yb3+/mol%
    11 (1)7 (32)2615.08
    22 (3.9)3 (14)65415.60
    33 (6.8)10 (45.5)13779.16
    44 (9.7)6 (27.5)67919.49
    55 (12.6)2 (9.5)53751.00
    66 (15.5)9 (41)27765.73
    77 (18.4)5 (23)60404.28
    88 (21.3)1 (5)27232.45
    99 (24.2)8 (36.5)25725.90
    1010 (27.1)4 (18.5)45363.83
    1111 (30)11 (50)5775.05
    下载: 导出CSV

    表 3  Tm3+/Yb3+自然因素水平及编码设计表

    Table 3.  Tm3+/Yb3+ natural factors level and coding table.

    xj(zj)z1z2
    Tm3+/mol%Yb3+/mol%
    $ r({z_{2 j}}) $0.420
    $ 1({z_{0 j}} + {\Delta _j}) $0.344418.5361
    $ 0({z_{0 j}}) $0.2115
    $ - 1({z_{0 j}} - {\Delta _j}) $0.075611.4639
    $ - r({z_{1 j}}) $0.0210
    $ {\Delta _j} = ({{{z_{2 j}} - {z_{1 j}}}})/{{2 r}} $0.13443.5361
    $ {x_j} = \dfrac{{{z_j} - {z_{0 j}}}}{{{\Delta _j}}} $$ {x_1} = \dfrac{{{z_1} - 0.21}}{{0.1344}} $$ {x_2} = \dfrac{{{z_2} - 15}}{{3.5361}} $
    下载: 导出CSV

    表 4  Tm3+/Yb3+二次通用旋转组合设计试验方案及蓝光积分结果

    Table 4.  Tm3+/Yb3+ scheme of quadratic general rotary unitized design and blue luminescence integrated results.

    No.Factors${y_{\rm{b\_int}} }$/
    (arb. units)
    $ {x_0} $$ {x_1}({z_1}) $$ {x_2}({z_2}) $$ {x_1}{x_2} $$ x_1^2 $$ x_2^2 $
    1111111103074.268
    211–1–11182246.127
    31–11–11152874.380
    41–1–111159604.598
    51r00r2099703.531
    61r00r2052894.450
    710r00r2102782.281
    810r00r292052.066
    910000091641.231
    10100000119721.420
    11100000107477.062
    12100000102883.388
    13100000100900.284
    下载: 导出CSV

    表 5  Er3+/Yb3+正交多项式回归设计试验方案及绿光积分结果

    Table 5.  Er3+/Yb3+ scheme of orthogonal polynomial regression design and green luminescence integrated results.

    No.schemeψ0X1
    (z1)
    X2
    (z1)
    X3
    (z1)
    X1
    (z2)
    X2
    (z2)
    X3
    (z2)
    X1X1
    (z1z2)
    ${y_{\rm{g\_int}} }$/
    (arb. unit)
    $ {z_1} $$ {z_2} $
    15121–11–1–31–1338813.91
    2516.331–11–1–1–13143767.25
    3520.671–11–11–1–3–139883.01
    45251–11–1311–334969.53
    57.331210–23–31–1049578.38
    67.3316.3310–23–1–13062691.10
    77.3320.6710–231–1–3056730.83
    87.332510–23311049814.24
    99.6712111–3–31–1–339812.41
    109.6716.33111–3–1–13–152462.51
    119.6720.67111–31–1–3150272.68
    129.6725111–3311338264.82
    1312121311–31–1354874.82
    141216.331311–1–13–956897.90
    151220.6713111–1–3350154.07
    1612251311311948139.09
    177.3316.3361723.89
    187.3316.3358839.98
    197.3316.3364899.02
    207.3316.3363139.10
    下载: 导出CSV

    表 6  旋转组合设计F方差检验和显著性分析

    Table 6.  Rotary unitized design F-variance test and significant analysis.

    计算
    项目
    偏差平方和自由度$ {F}_{比} $显著性
    α
    $ {S}_{回} $4995616451.05510.720.01
    $ {S_{\text{R}}} $652160821.937
    ${S_{\rm{lf}} }$230690012.8930.730.01
    ${S_{\text{e} } }$421470809.044
    $ {S}_{总} $5647777272.9912
    下载: 导出CSV

    表 7  正交多项式回归设计 F 方差检验和显著性分析

    Table 7.  Orthogonal polynomial regression design F-variance test and significant analysis.

    计算
    项目
    偏差平方和自由度${{F} }_{\text{比} }$显著性 $ \text{α} $
    $ {S}_{回} $900041174.40712.060.01
    $ {S_{\text{R}}} $85273837.778
    ${S_{\rm e } }$20165233.9530.380.01
    $ {S}_{总} $985315012.1015
    $ {\widehat y_0} $61434.84
    $ {\overline y _0} $63027.40
    下载: 导出CSV
  • [1]

    Zhang W S, Gao Q, Zhou S, Li L J, Ma X Z 2021 Opt. Laser Technol. 114 107368

    [2]

    Chen Y Z, Peng F, Zhang Q L, Liu W P, Dou R Q, Ding S J, Luo J Q, Sun D L, Sun G H, Wang X F 2017 J. Lumin. 192 555Google Scholar

    [3]

    Dai T Y, Guo S X, Duan X M, Dou R Q, Zhang Q L 2019 Opt. Express 27 34205

    [4]

    Issler S L, Torardi C C 1995 J. Alloy Compd. 229 54Google Scholar

    [5]

    Li B, Gu Z N, Lin J H, Su M Z 2000 Mater. Res. Bull. 35 1921Google Scholar

    [6]

    Siqueira K P F, Carmo A P, Bell M J V, Dias A 2013 J. Lumin. 138 133Google Scholar

    [7]

    Brixner L H, Chen H 1983 J. Electrochem. Soc. 130 12Google Scholar

    [8]

    Roy A, Dwivedi A, Kumar D, Mishra H, Rai S B 2020 Ceram. Int. 46 24893Google Scholar

    [9]

    Roy A, Dwivedi A, Mishra H, Kumar D, Rai S B 2020 J. Alloy Compd. 821 2020

    [10]

    Sun G H, Zhang Q L, Luo J Q, Liu W P, Han S, Zheng L L, Li W M 2019 J. Lumin. 217 116831

    [11]

    任露泉 2009 试验优化设计与分析 (北京: 科学出版社) 第1页

    Ren L Q 2009 Design of Experiment and Optimization (Beijing: Science Press) p1 (in Chinese)

    [12]

    Sun J S, Shi L L, Li S W, Li J J, Li X P, Zhang J S, Cheng L H, Chen B J 2016 Mater. Res. Bull. 80 102Google Scholar

    [13]

    刘盛意, 张金苏, 孙佳石, 陈宝玖, 李香萍, 徐赛, 程丽红 2019 物理学报 68 053301Google Scholar

    Liu S Y, Zhang J S, Sun J S, Chen B J, Li X P, Xu S, Cheng L H 2019 Acta Phys. Sin. 68 053301Google Scholar

    [14]

    赵越, 杨帆, 孙佳石, 李香萍, 张金苏, 张希珍, 徐赛, 程丽红, 陈宝玖 2019 物理学报 68 213301Google Scholar

    Zhao Y, Yang F, Sun J S, Li X P, Zhang J S, Zhang X Z, Xu S, Cheng L H, Chen B J 2019 Acta Phys. Sin. 68 213301Google Scholar

    [15]

    孙佳石, 李香萍, 吴金磊, 李树伟, 石琳琳, 徐赛, 张金苏, 程丽红, 陈宝玖 2017 物理学报 66 100201Google Scholar

    Sun J S, Li X P, Wu J L, Li S W, Shi L L, Xu S, Zhang J S, Cheng L H, Chen B J 2017 Acta Phys. Sin. 66 100201Google Scholar

    [16]

    何为, 薛卫东, 唐斌 2012 优化试验设计方法及数据分析 (北京: 化学工业出版社) 第164—170页

    He W, Xue W D, Tang B 2012 The Method of Opti-mal Design of Experiment and Data Analysis (Beijing: Chemical Industry Press) pp164–170 (in Chinese)

    [17]

    杨帆 2020 硕士学位论文 (大连: 大连海事大学)

    Yang F 2020 M. S. Thesis (Dalian: Dalian Maritime University) (in Chinese)

    [18]

    任露泉 2009 回归设计及其优化 (北京: 科学出版社) 第12页

    Ren L Q 2009 Regression Design and Optimization (Beijing: Science Press) p12 (in Chinese)

    [19]

    He C, Yang K S, Liu L, Si Z J 2013 J. Rare Earths 31 790Google Scholar

    [20]

    Van U 1967 J. Electrochem. Soc. 114 1048Google Scholar

    [21]

    Tian Y, Chen B J, Hua R N, Yu N S, Liu B Q, Sun J S, Cheng L H, Zhong H Y, Li X P, Zhang J S, Tian B N, Zhong H 2012 CrystEngComm 14 1760Google Scholar

    [22]

    Tian B N, Chen B J, Tian Y, Sun J S, Li X P, Zhang J S, Zhong H Y, Cheng L H, Hua R N 2012 J. Phys. Chem. Solids 73 1314Google Scholar

    [23]

    Liu X L, Han K, Gu M, Xiao L H, Ni C, Huang S M, Liu B 2007 Solid State Commun. 142 680Google Scholar

    [24]

    肖莉红, 顾牡, 刘小林, 张睿, 刘冰洁, 徐昕 2007 光谱学与光谱分析 27 1054Google Scholar

    Xiao L H, Gu M, Liu X L, Zhang R, Liu B J, Xu X 2007 Spectrosc. Spectral Anal. 27 1054Google Scholar

    [25]

    傅尚怡, 顾牡, 刘小林, 倪晨, 刘波, 黄世明 2010 光谱学与光谱分析 30 2317Google Scholar

    Fu S Y, Gu M, Liu X L, Ni C, Liu B, Huang S M 2010 Spectrosc. Spectral Anal. 30 2317Google Scholar

    [26]

    Liu W J, Zhang W J, Liu R X, Li G J 2021 New J. Chem. 45 9818Google Scholar

    [27]

    Yu H Q, Jiang P P, Chen B J, Sun J S, Cheng L H, Li X P, Zhang J S, Xu S 2020 Appl. Phys. A 126 690Google Scholar

    [28]

    Jung K Y 2020 RSC Adv. 10 16323Google Scholar

    [29]

    张洪杰, 苏锵 1988 应用化学 3 28

    Zhang H J, Su Q 1988 Chin. J. Appl. Chem. 3 28

  • [1] 严学文, 张景蕾, 张正宇, 丁鹏, 韩庆艳, 张成云, 高伟, 董军. 单颗粒NaYbF4:2%Er3+@NaYbF4核壳微米盘的上转换红光发射增强机理. 物理学报, 2024, 73(5): 054206. doi: 10.7498/aps.73.20231663
    [2] 慕立鹏, 周姚, 赵建行, 王丽, 蒋礼, 周见红. 基于阳极氧化铝模板增强NaYF4:Yb3+/Er3+上转换发光研究. 物理学报, 2024, 73(3): 037803. doi: 10.7498/aps.73.20231405
    [3] 阿热帕提·夏克尔, 王林香, 李晴, 柏云凤, 穆妮热·买买提. Tm3+, Yb3+共掺Bi2WO6上转换发光材料的制备及其温度传感性质. 物理学报, 2023, 72(6): 060701. doi: 10.7498/aps.72.20222143
    [4] 高伟, 骆一帆, 邢宇, 丁鹏, 陈斌辉, 韩庆艳, 严学文, 张成云, 董军. 构建NaErF4@NaYbF4:2%Er3+核壳结构增强Er3+离子红光上转换发射. 物理学报, 2023, 72(17): 174204. doi: 10.7498/aps.72.20230762
    [5] 高伟, 王博扬, 韩庆艳, 韩珊珊, 程小同, 张晨雪, 孙泽煜, 刘琳, 严学文, 王勇凯, 董军. 构建垂直金纳米棒阵列增强NaYF4:Yb3+/Er3+纳米晶体的上转换发光. 物理学报, 2020, 69(18): 184213. doi: 10.7498/aps.69.20200575
    [6] 赵越, 杨帆, 孙佳石, 李香萍, 张金苏, 张希珍, 徐赛, 程丽红, 陈宝玖. 试验优化设计Er3+/Yb3+共掺Ba5Gd8Zn4O21荧光粉及红光上转换发光性质研究. 物理学报, 2019, 68(21): 213301. doi: 10.7498/aps.68.20191192
    [7] 高伟, 董军, 王瑞博, 王朝晋, 郑海荣. Er3+/Yb3+共掺NaYF4/LiYF4微米晶体的上转换荧光特性. 物理学报, 2016, 65(8): 084205. doi: 10.7498/aps.65.084205
    [8] 杨健芝, 邱建备, 杨正文, 宋志国, 杨勇, 周大成. Ba5SiO4Cl6: Yb3+, Er3+, Li+荧光粉的制备及上转换发光性质研究. 物理学报, 2015, 64(13): 138101. doi: 10.7498/aps.64.138101
    [9] 毛鑫光, 王俊, 沈杰. 磁控溅射制备Er3+/Yb3+共掺杂TiO2薄膜的上转换发光特性. 物理学报, 2014, 63(8): 087803. doi: 10.7498/aps.63.087803
    [10] 郑龙江, 李雅新, 刘海龙, 徐伟, 张治国. Tm3+,Yb3+共掺钨酸钙多晶材料的上转换发光及荧光温度特性. 物理学报, 2013, 62(24): 240701. doi: 10.7498/aps.62.240701
    [11] 彭勇, 邢明铭, 罗昔贤, 王立强. 热解法制备KY3F10: Yb, RE(RE=Er, Ho, Tm)纳米晶及其特性研究. 物理学报, 2012, 61(13): 137201. doi: 10.7498/aps.61.137201
    [12] 刘名扬, 孙维瑾. (Pr3+ ,Yb3+ )共掺氟化物玻璃上转换敏化发光. 物理学报, 2011, 60(7): 077804. doi: 10.7498/aps.60.077804
    [13] 王大刚, 周亚训, 王训四, 戴世勋, 沈祥, 陈飞飞, 王森. 应用于白光显示的Tm3+/Ho3+/Yb3+共掺碲酸盐玻璃上转换发光特性研究. 物理学报, 2010, 59(9): 6256-6260. doi: 10.7498/aps.59.6256
    [14] 甘棕松, 余 华, 李妍明, 王亚楠, 陈 晖, 赵丽娟. Tm3+/Yb3+共掺氟氧硅铝酸盐玻璃陶瓷蓝色上转换发光研究. 物理学报, 2008, 57(9): 5699-5704. doi: 10.7498/aps.57.5699
    [15] 厉旭杰, 聂秋华, 戴世勋, 徐铁峰, 沈 祥, 章向华. 低温下Er3+/Yb3+共掺碲酸盐玻璃的发光特性研究. 物理学报, 2008, 57(5): 3001-3005. doi: 10.7498/aps.57.3001
    [16] 金 哲, 聂秋华, 徐铁峰, 戴世勋, 沈 祥, 章向华. Tm3+/Yb3+共掺碲铅锌镧玻璃的能量传递和上转换发光. 物理学报, 2007, 56(4): 2261-2267. doi: 10.7498/aps.56.2261
    [17] 杨中民, 张勤远, 刘粤惠, 姜中宏. Yb3+/Er3+共掺锗碲酸盐玻璃上转换发光增强机理的研究. 物理学报, 2005, 54(5): 2013-2018. doi: 10.7498/aps.54.2013
    [18] 温 磊, 杨建虎, 胡丽丽. 掺Er3+卤碲酸盐玻璃上转换能级寿命和发光性能研究. 物理学报, 2004, 53(12): 4378-4381. doi: 10.7498/aps.53.4378
    [19] 陈晓波, 刘凯, 庄健, 王国文, 陈创天. HoYb:YVO4的上转换发光研究. 物理学报, 2002, 51(3): 690-695. doi: 10.7498/aps.51.690
    [20] 王吉有, 国伟林, 林志明, 宋广智, 赵丽娟, 张存洲, 张光寅. 高光强激发下Er3+/Yb3+共掺TiBa玻璃的绿光上转换发光. 物理学报, 2002, 51(8): 1861-1864. doi: 10.7498/aps.51.1861
计量
  • 文章访问数:  5273
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-16
  • 修回日期:  2022-04-07
  • 上网日期:  2022-08-06
  • 刊出日期:  2022-08-20

/

返回文章
返回