搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

类比Bañados-Teitelboim-Zanelli黑洞的辐射屏蔽

张鸿宾 陈玲 张保成

引用本文:
Citation:

类比Bañados-Teitelboim-Zanelli黑洞的辐射屏蔽

张鸿宾, 陈玲, 张保成

Radiation shielding of analog Bañados-Teitelboim-Zanelli black holes

Zhang Hong-Bin, Chen Ling, Zhang Bao-Cheng
PDF
HTML
导出引用
  • 虽然类比引力理论表明可以使用实验室的物理系统类比黑洞的时空结构, 但是旋转黑洞的结构很难在实验室体系中找到较好的对应. 本文使用特设的涡旋光, 在理论上找到了一种接近Bañados-Teitelboim-Zanelli (BTZ)黑洞的类比结构, 通过计算无质量粒子和声波在类比 BTZ 黑洞和引力的 BTZ 黑洞时空中的运动来比较它们的异同. 两种黑洞时空无质量粒子和声波的有效势能给出了相同的能量和角动量的辐射禁区分布, 不同的是, BTZ 黑洞经典禁区沿径向将趋近固定的能量值, 而类比BTZ 黑洞的经典禁区沿径向将闭合. 幸运的是, 在视界和能层附近, 无质量粒子和声波的运动行为几乎一致, 从这个角度来说, 类比实验体系能够很好地模拟BTZ黑洞. 特别地, 在两种黑洞时空下, 低能量高角动量的粒子的经典禁区都更宽.
    Although the theory of analog gravity suggests that we can simulate the space-time structure of black holes by using laboratory physical systems, it is difficult to find the analogs for rotating black holes in laboratory systems. In this work, we use a new field form for the optical vortex to study the analogous black hole structure close to the Bañados-Teitelboim-Zanelli (BTZ) black hole. We compare the similarities and differences between massless particles and sound waves by calculating their motions in space-time analogous to BTZ black holes and gravitational BTZ black holes. The effective potential energy values of massless particles and sound waves in both kinds of black hole spacetimes give the same forbidden-zone distributions of energy and angular momentum. The difference is that the classical forbidden area of the BTZ black hole will approach fixed energy values along the radial direction, while the classical forbidden area of the analogous BTZ black hole will be closed along the radial direction. Fortunately, near the event horizon and the ergosphere, the behaviors of massless particles and sound waves are almost the same. From this point of view, we can say that the analogous experimental system can simulate the BTZ black hole very well. In particular, the classically forbidden regions of particles with low energy and high angular momentum are wider in both types of black hole space-time.
      通信作者: 张保成, zhangbaocheng@cug.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11654001)资助的课题
      Corresponding author: Zhang Bao-Cheng, zhangbaocheng@cug.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11654001).
    [1]

    Unruh W G 1981 Phys. Rev. Lett. 46 1351Google Scholar

    [2]

    Hawking S W 1974 Nature 248 30Google Scholar

    [3]

    Lahav O, Itah A, Blumkin A, Gordon C, Rinott S, Zayats A, Steinhauer J 2010 Phys. Rev. Lett. 105 240401Google Scholar

    [4]

    Nguyen H S, Gerace D, Carusotto I, Sanvitto D, Galopin E, Lemaître A, Sagnes I, Bloch J, Amo A 2015 Phys. Rev. Lett. 114 036402Google Scholar

    [5]

    Euvé L P, Michel F, Parentani R, Philbin T G, Rousseaux G 2016 Phys. Rev. Lett. 117 121301Google Scholar

    [6]

    Painlevé P 1921 C. R. Acad. Sci. , Paris 173 677

    [7]

    Gullstrand A 1922 Ark. Mat. Astron. Fys. 16 1

    [8]

    Lemaître G 1933 Ann. Soc. Sci. Brux. A 53 51

    [9]

    Robertson S J 2012 J. Phys. B: At. Mol. Opt. Phys. 45 163001Google Scholar

    [10]

    Garza P, Kabat D, van Gelder A 2018 Class. Quantum Grav. 35 165009Google Scholar

    [11]

    Zhang B 2016 Adv. High Energy Phys. 2016 5710625

    [12]

    Visser M 1998 Class. Quantum Grav. 15 1767Google Scholar

    [13]

    Penrose R, Floyd R M 1971 Nat. Phys. Sci. 229 177Google Scholar

    [14]

    Fagnocchi S, Finazzi S, Liberati S, Kormos M, Trombettoni A 2010 New J. Phys. 12 095012Google Scholar

    [15]

    Kroon J A V 2004 Phys. Rev. Lett. 92 041101Google Scholar

    [16]

    Visser M, Weinfurtner S 2005 Class. Quantum Grav. 22 2493Google Scholar

    [17]

    Berti E, Cardoso V, Lemos J P S 2004 Phys. Rev. D 70 124006Google Scholar

    [18]

    Carusotto I, Ciuti C 2013 Rev. Mod. Phys. 85 299Google Scholar

    [19]

    Braidotti M C, Faccio D, Wright E M 2020 Phys. Rev. Lett. 125 193902Google Scholar

    [20]

    Ornigotti M, Bar-Ad S, Szameit A, Fleurov V 2018 Phys. Rev. A 97 013823Google Scholar

    [21]

    Prodanov E M 2014 Class. Quantum Grav. 31 105013Google Scholar

    [22]

    Mc Caughey E 2016 Eur. Phys. J. C 76 179Google Scholar

    [23]

    Gillani U A, Saifullah K 2021 Astropart. Phys. 125 102496Google Scholar

    [24]

    Banados M, Teitelboim C, Zanelli J 1992 Phys. Rev. Lett. 69 1849Google Scholar

    [25]

    Giacomelli L, Liberati S 2017 Phys. Rev. D 96 064014Google Scholar

    [26]

    Townsend P K, Zhang B 2013 Phys. Rev. Lett. 110 241302Google Scholar

    [27]

    Zhang B 2013 Phys. Rev. D 88 124017Google Scholar

    [28]

    Liang C, Gong L, Zhang B 2017 Class. Quantum Grav. 34 035017Google Scholar

    [29]

    Carlip S 1998 Class. Quantum Grav. 15 3609Google Scholar

    [30]

    Visser M 1998 Phys. Rev. Lett. 80 3436Google Scholar

    [31]

    Garay L J, Anglin J R, Cirac J I, Zoller P 2000 Phys. Rev. Lett. 85 4643Google Scholar

    [32]

    Marino F 2008 Phys. Rev. A 78 063804Google Scholar

    [33]

    Marino F, Ciszak M, Ortolan A 2009 Phys. Rev. A 80 065802Google Scholar

    [34]

    Prain A, Maitland C, Faccio D, Marino F 2019 Phys. Rev. D 100 024037Google Scholar

    [35]

    Boyd R W 2020 Nonlinear Optics (4th Ed.) (New York: Academic Press) pp65–69

    [36]

    Braidotti M C, Prizia R, Maitland C, Marino F, Prain A, Starshynov I, Westerberg N, Wright E M, Faccio D 2022 Phys. Rev. Lett. 128 013901Google Scholar

    [37]

    Vocke D, Roger T, Marino F, Wright E M, Carusotto I, Clerici M, Faccio D 2015 Optica 2 484Google Scholar

    [38]

    Vocke D, Maitland C, Prain A, Wilson K E, Biancalana F, Wright E M, Marino F, Faccio D 2018 Optica 5 1099Google Scholar

    [39]

    Yan J 2021 Phys. Lett. B 818 136359Google Scholar

    [40]

    Heckenberg N R, McDuff R, Smith C P, White A G 1992 Opt. Lett. 17 221Google Scholar

    [41]

    McGloin D, Spalding G C, Melville H, Sibbett W, Dholakia K 2003 Opt. Express 11 158Google Scholar

    [42]

    Ostrovsky A S, Rickenstorff-Parrao C, Arrizón V 2013 Opt. Lett. 38 34Google Scholar

    [43]

    Farina C, Gamboa J, Segui-Santonja A J 1993 Class. Quantum Grav. 10 L193Google Scholar

    [44]

    Wilkins D C 1972 Phys. Rev. D 5 814

    [45]

    Chandrasekhar S 1983 The Mathematical Theory of Black Holes (New York: Oxford university press) pp342–347

    [46]

    Cebeci H, Özdemir N, Şentorun S 2016 Phys. Rev. D 93 104031Google Scholar

    [47]

    Banados M, Henneaux M, Teitelboim C, Zanelli J 1993 Phys. Rev. D 48 1506

    [48]

    Cruz N, Martinez C, Pena L 1994 Class. Quantum Grav. 11 2731Google Scholar

    [49]

    Solnyshkov D D, Leblanc C, Koniakhin S V, Bleu O, Malpuech G 2019 Phys. Rev. B 99 214511Google Scholar

  • 图 1  模拟$M = 3$$J = 1.3 l$旋转BTZ黑洞的流体速度

    Fig. 1.  Fluid velocity that analogs to a spinning BTZ black hole with $M = 3$ and $J = 1.3 l$.

    图 2  涡旋光模拟旋转BTZ黑洞的流体速度(${\rho _0} = 1.4 \times $$ {10^5}{\text{ W}}/{{\text{m}}^2}, \sigma = 5{\text{ mm}}, {n_0} = 1.5, \left| {{n_2}} \right| = 4.4 \times {10^{ - 11}}{\text{ }}{{\text{m}}^2}/{\text{W}}$)

    Fig. 2.  Fluid velocity that analogs to a spinning BTZ black hole by the optical vortex (${\rho _0} = 1.4 \times {10^5}{\text{ W/}}{{\text{m}}^2}, \sigma = 5{\text{ mm}}, $$ {n_0} = 1.5, \left| {{n_2}} \right| = 4.4 \times {10^{ - 11}}{\text{ }}{{\text{m}}^{\text{2}}}{\text{/W}}$).

    图 3  BTZ黑洞能层外和能层内的经典禁区$\left( {M = 3, J = 1.3, l = 1} \right)$ (a)能层外的经典禁区图$ \left( {{r^2} = 9} \right) $; (b)能层内的经典禁区图$\left( {{r^2} = 2.9} \right)$

    Fig. 3.  Classically forbidden region of BTZ black hole outside and inside the ergosphere $\left( {M = 3, J = 1.3, l = 1} \right)$: (a) The classically forbidden region outside the ergosphere $ \left( {{r^2} = 9} \right) $; (b) the classically forbidden region inside the ergosphere $\left( {{r^2} = 2.9} \right)$.

    图 4  BTZ黑洞静界和静界外的经典禁区$ \left(M=3, J=3, l=1\right) $ (a)${E_ + }$${E_ - }$之间的黄色区域是静界处的径向运动的经典禁区, 在这些区域辐射将被禁止发生; (b)静界外角动量${L_ + }$(蓝线)和${L_ - }$(红线)两根之外的黄色区域是经典禁区, 图中画的是$E = 1$时的${L_ + }$${L_ - }$两根, 也就是碰撞参数

    Fig. 4.  Classically forbidden region of the BTZ black hole at the static limit and outside the ergosphere $ \left(M=3, J=3, l=1\right) $: (a) The yellow area between ${E_ + }$ and ${E_ - }$ is the classically forbidden area of radial motion at the static limit, where the radiation will be forbidden to occur; (b) the yellow area outside the static limit outside the angular momentum ${L_ + }$ (blue line) and ${L_ - }$ (red line) is a classically forbidden area, as shown in the figure it is the two roots of ${L_ + }$ and ${L_ - }$ when $E = 1$, that is, the impact parameter.

    图 5  BTZ黑洞径向的经典禁区 (a)经典禁区位于${E_ + }$(蓝线)和${E_ - }$(红线)之间; 无质量粒子的角动量分别取1, 2, 4, 6$ \left(M=3, J=1.3, l=1\right) $, BTZ黑洞的内视界、外视界和静界分别位于$ {r}_{-}=0.385, {r}_{+}=1.689, {r}_{\text{s}}=1.732 $; (b)角动量L = 2的经典禁区的边界将趋近于2和–2

    Fig. 5.  . Classically forbidden region of the BTZ black hole at radial. (a) The classically forbidden region is between ${E_ + }$ (blue line) and ${E_ - }$ (red line); the angular momentum of massless particles is 1, 2, 4, 6 $ \left(M=3, J=1.3, l=1\right) $, the inner horizon of the BTZ black hole, the outer horizon and the static limit are respectively located at $ {r}_{-}=0.385, {r}_{+}=1.689, {r}_{\text{s}}=1.732 $; (b) the boundary of the classically forbidden region with angular momentum L of 2 will approach to 2 and –2.

    图 6  类比黑洞能层外和能层内的经典禁区 (a)能层外的经典禁区图$\left( {r = 1.6{\text{ mm}}} \right)$; (b) 能层内的经典禁区图$\left( {r = 1.5{\text{ mm}}} \right)$

    Fig. 6.  Classically forbidden region of analog black hole outside and inside the ergosphere: (a) The classically forbidden region outside the ergosphere $\left( {r = 1.6{\text{ mm}}} \right)$; (b) the classically forbidden region inside the ergosphere $\left( {r = 1.5{\text{ mm}}} \right)$.

    图 7  类比黑洞静界和静界外的经典禁区 (a)${E_ + }$${E_ - }$之间的黄色区域是静界处的径向运动的经典禁区; (b)静界外角动量${L_ + }$(蓝线)和${L_ - }$(红线)两根之外的黄色区域是经典禁区

    Fig. 7.  Classically forbidden region of the analog black hole at the static limit and outside the ergosphere: (a) The yellow area between ${E_ + }$ and ${E_ - }$ is the classically forbidden area of radial motion at the static limit; (b) the yellow area outside the static limit outside the angular momentum ${L_ + }$ (blue line) and ${L_ - }$ (red line) is a classically forbidden area.

    图 8  类比黑洞径向的经典禁区, 其位于${E_ + }$(蓝线)和${E_ - }$(红线)之间; 无质量粒子的角动量分别取$1 \times {10^{ - 10}}$, $2 \times $$ {10^{ - 10}}$, $4 \times {10^{ - 10}}$, $8 \times {10^{ - 10}}$; 类比BTZ黑洞的内视界、外视界和静界分别位于${r}_{-}=0.36\text{ mm}, {r}_{+}=1.40\text{ mm}, {r}_{\text{s}}= $$ 1.55\text{ mm}$

    Fig. 8.  Classically forbidden region of the analog black hole at radial. The classical forbidden area is between ${E_ + }$ (blue line) and ${E_ - }$ (red line); the angular momentum of massless particles is respectively $1 \times {10^{ - 10}}$, $2 \times {10^{ - 10}}$, $4 \times $$ {10^{ - 10}}$, $8 \times {10^{ - 10}}$. The inner horizon of the analog black hole, the outer horizon and the static limit are respectively located at $ {r}_{-}=0.36\text{ mm}, {r}_{+}=1.40\text{ mm}, {r}_{\text{s}}=1.55\text{ mm} $.

  • [1]

    Unruh W G 1981 Phys. Rev. Lett. 46 1351Google Scholar

    [2]

    Hawking S W 1974 Nature 248 30Google Scholar

    [3]

    Lahav O, Itah A, Blumkin A, Gordon C, Rinott S, Zayats A, Steinhauer J 2010 Phys. Rev. Lett. 105 240401Google Scholar

    [4]

    Nguyen H S, Gerace D, Carusotto I, Sanvitto D, Galopin E, Lemaître A, Sagnes I, Bloch J, Amo A 2015 Phys. Rev. Lett. 114 036402Google Scholar

    [5]

    Euvé L P, Michel F, Parentani R, Philbin T G, Rousseaux G 2016 Phys. Rev. Lett. 117 121301Google Scholar

    [6]

    Painlevé P 1921 C. R. Acad. Sci. , Paris 173 677

    [7]

    Gullstrand A 1922 Ark. Mat. Astron. Fys. 16 1

    [8]

    Lemaître G 1933 Ann. Soc. Sci. Brux. A 53 51

    [9]

    Robertson S J 2012 J. Phys. B: At. Mol. Opt. Phys. 45 163001Google Scholar

    [10]

    Garza P, Kabat D, van Gelder A 2018 Class. Quantum Grav. 35 165009Google Scholar

    [11]

    Zhang B 2016 Adv. High Energy Phys. 2016 5710625

    [12]

    Visser M 1998 Class. Quantum Grav. 15 1767Google Scholar

    [13]

    Penrose R, Floyd R M 1971 Nat. Phys. Sci. 229 177Google Scholar

    [14]

    Fagnocchi S, Finazzi S, Liberati S, Kormos M, Trombettoni A 2010 New J. Phys. 12 095012Google Scholar

    [15]

    Kroon J A V 2004 Phys. Rev. Lett. 92 041101Google Scholar

    [16]

    Visser M, Weinfurtner S 2005 Class. Quantum Grav. 22 2493Google Scholar

    [17]

    Berti E, Cardoso V, Lemos J P S 2004 Phys. Rev. D 70 124006Google Scholar

    [18]

    Carusotto I, Ciuti C 2013 Rev. Mod. Phys. 85 299Google Scholar

    [19]

    Braidotti M C, Faccio D, Wright E M 2020 Phys. Rev. Lett. 125 193902Google Scholar

    [20]

    Ornigotti M, Bar-Ad S, Szameit A, Fleurov V 2018 Phys. Rev. A 97 013823Google Scholar

    [21]

    Prodanov E M 2014 Class. Quantum Grav. 31 105013Google Scholar

    [22]

    Mc Caughey E 2016 Eur. Phys. J. C 76 179Google Scholar

    [23]

    Gillani U A, Saifullah K 2021 Astropart. Phys. 125 102496Google Scholar

    [24]

    Banados M, Teitelboim C, Zanelli J 1992 Phys. Rev. Lett. 69 1849Google Scholar

    [25]

    Giacomelli L, Liberati S 2017 Phys. Rev. D 96 064014Google Scholar

    [26]

    Townsend P K, Zhang B 2013 Phys. Rev. Lett. 110 241302Google Scholar

    [27]

    Zhang B 2013 Phys. Rev. D 88 124017Google Scholar

    [28]

    Liang C, Gong L, Zhang B 2017 Class. Quantum Grav. 34 035017Google Scholar

    [29]

    Carlip S 1998 Class. Quantum Grav. 15 3609Google Scholar

    [30]

    Visser M 1998 Phys. Rev. Lett. 80 3436Google Scholar

    [31]

    Garay L J, Anglin J R, Cirac J I, Zoller P 2000 Phys. Rev. Lett. 85 4643Google Scholar

    [32]

    Marino F 2008 Phys. Rev. A 78 063804Google Scholar

    [33]

    Marino F, Ciszak M, Ortolan A 2009 Phys. Rev. A 80 065802Google Scholar

    [34]

    Prain A, Maitland C, Faccio D, Marino F 2019 Phys. Rev. D 100 024037Google Scholar

    [35]

    Boyd R W 2020 Nonlinear Optics (4th Ed.) (New York: Academic Press) pp65–69

    [36]

    Braidotti M C, Prizia R, Maitland C, Marino F, Prain A, Starshynov I, Westerberg N, Wright E M, Faccio D 2022 Phys. Rev. Lett. 128 013901Google Scholar

    [37]

    Vocke D, Roger T, Marino F, Wright E M, Carusotto I, Clerici M, Faccio D 2015 Optica 2 484Google Scholar

    [38]

    Vocke D, Maitland C, Prain A, Wilson K E, Biancalana F, Wright E M, Marino F, Faccio D 2018 Optica 5 1099Google Scholar

    [39]

    Yan J 2021 Phys. Lett. B 818 136359Google Scholar

    [40]

    Heckenberg N R, McDuff R, Smith C P, White A G 1992 Opt. Lett. 17 221Google Scholar

    [41]

    McGloin D, Spalding G C, Melville H, Sibbett W, Dholakia K 2003 Opt. Express 11 158Google Scholar

    [42]

    Ostrovsky A S, Rickenstorff-Parrao C, Arrizón V 2013 Opt. Lett. 38 34Google Scholar

    [43]

    Farina C, Gamboa J, Segui-Santonja A J 1993 Class. Quantum Grav. 10 L193Google Scholar

    [44]

    Wilkins D C 1972 Phys. Rev. D 5 814

    [45]

    Chandrasekhar S 1983 The Mathematical Theory of Black Holes (New York: Oxford university press) pp342–347

    [46]

    Cebeci H, Özdemir N, Şentorun S 2016 Phys. Rev. D 93 104031Google Scholar

    [47]

    Banados M, Henneaux M, Teitelboim C, Zanelli J 1993 Phys. Rev. D 48 1506

    [48]

    Cruz N, Martinez C, Pena L 1994 Class. Quantum Grav. 11 2731Google Scholar

    [49]

    Solnyshkov D D, Leblanc C, Koniakhin S V, Bleu O, Malpuech G 2019 Phys. Rev. B 99 214511Google Scholar

  • [1] 李若楠, 薛晶晶, 宋丹, 李鑫, 王丹, 杨保东, 周海涛. 非互易-互易放大转换下光学轨道角动量的转移. 物理学报, 2025, 74(4): . doi: 10.7498/aps.74.20241565
    [2] 连天虹, 窦逸群, 周磊, 刘芸, 寇科, 焦明星. 热效应作用下高功率薄片涡旋激光器的模场结构. 物理学报, 2024, 73(16): 164206. doi: 10.7498/aps.73.20240757
    [3] 赵婷, 宫毛毛, 张松斌. 氦原子贝塞尔涡旋光电离的理论研究. 物理学报, 2024, 73(24): 244201. doi: 10.7498/aps.73.20241378
    [4] 杨鑫宇, 叶华朋, 李佩芸, 廖鹤麟, 袁冬, 周国富. 小型化涡旋光模式解复用器: 原理、制备及应用. 物理学报, 2023, 72(20): 204207. doi: 10.7498/aps.72.20231521
    [5] 陈天宇, 王长顺, 潘雨佳, 孙丽丽. 利用全息法在偶氮聚合物薄膜中记录涡旋光场. 物理学报, 2021, 70(5): 054204. doi: 10.7498/aps.70.20201496
    [6] 吴立祥, 李鑫, 杨元杰. 基于双层阿基米德螺线的表面等离激元涡旋产生方法. 物理学报, 2019, 68(23): 234201. doi: 10.7498/aps.68.20190747
    [7] 魏薇, 张志明, 唐莉勤, 丁镭, 范万德, 李乙钢. 六重准晶涡旋光光子晶体光纤特性. 物理学报, 2019, 68(11): 114209. doi: 10.7498/aps.68.20190381
    [8] 张羚翔, 魏薇, 张志明, 廖文英, 杨振国, 范万德, 李乙钢. 环形光子晶体光纤中涡旋光的传输特性研究. 物理学报, 2017, 66(1): 014205. doi: 10.7498/aps.66.014205
    [9] 赵应春, 张秀英, 袁操今, 聂守平, 朱竹青, 王林, 李杨, 贡丽萍, 冯少彤. 基于涡旋光照明的暗场数字全息显微方法研究. 物理学报, 2014, 63(22): 224202. doi: 10.7498/aps.63.224202
    [10] 赵 仁, 张丽春, 李怀繁. 黑洞的Hawking辐射. 物理学报, 2008, 57(12): 7463-7466. doi: 10.7498/aps.57.7463
    [11] 赵 仁, 张丽春, 张胜利. 正则黑洞熵与相变. 物理学报, 2007, 56(12): 7355-7358. doi: 10.7498/aps.56.7355
    [12] 赵 仁, 张丽春, 张胜利. 正则黑洞熵. 物理学报, 2007, 56(7): 3719-3722. doi: 10.7498/aps.56.3719
    [13] 赵 仁, 张丽春, 胡双启. 黑洞的统计熵. 物理学报, 2006, 55(8): 3902-3905. doi: 10.7498/aps.55.3902
    [14] 蒋继建, 李传安. Kerr黑洞的量子面积谱及微黑洞的最小质量. 物理学报, 2005, 54(8): 3958-3961. doi: 10.7498/aps.54.3958
    [15] 张 雄, 杨卫国, 侯德东, 胡绍明, 郑永刚, 毛慰明. H0323+022天体的光变特性和黑洞质量研究. 物理学报, 2005, 54(6): 2961-2968. doi: 10.7498/aps.54.2961
    [16] 王丽萍, 朱建阳. 经典Kerr黑洞和量子Kerr黑洞系统的微正则系综理论描述与统计“自举”条件. 物理学报, 2005, 54(11): 5504-5510. doi: 10.7498/aps.54.5504
    [17] 李传安. 黑洞的视界面公式. 物理学报, 2000, 49(8): 1648-1651. doi: 10.7498/aps.49.1648
    [18] 赵峥, 刘文彪, 蒋亚铃. 黑洞碰撞的模拟. 物理学报, 2000, 49(3): 586-591. doi: 10.7498/aps.49.586
    [19] 刘文彪, 李 翔. 从Schwarzschild黑洞到极端Kerr-Newman黑洞. 物理学报, 1999, 48(10): 1793-1799. doi: 10.7498/aps.48.1793
    [20] 黄湘友. 不确定关系的经典类比. 物理学报, 1996, 45(3): 353-359. doi: 10.7498/aps.45.353
计量
  • 文章访问数:  4264
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-01
  • 修回日期:  2022-12-26
  • 上网日期:  2023-01-18
  • 刊出日期:  2023-03-20

/

返回文章
返回