搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

六重准晶涡旋光光子晶体光纤特性

魏薇 张志明 唐莉勤 丁镭 范万德 李乙钢

引用本文:
Citation:

六重准晶涡旋光光子晶体光纤特性

魏薇, 张志明, 唐莉勤, 丁镭, 范万德, 李乙钢

Transmission characteristics of vortex beams in a sixfold photonic quasi-crystal fiber

Wei Wei, Zhang Zhi-Ming, Tang Li-Qin, Ding Lei, Fan Wan-De, Li Yi-Gang
PDF
HTML
导出引用
  • 设计了一种新型的六重准晶涡旋光光子晶体光纤, 利用矢量有限元分析方法进行了数值模拟. 研究结果表明光纤中模式有效折射率差$ \Delta {n_{{\rm{eff}}}} > {10^{ - 4}}$, 实现了7个本征矢量模(10个相位涡旋光)的稳定传输, 并以${\rm{H}}{{\rm{E}}_{21}}\normalsize$为对象, 对光纤模式的传输特性进行了分析研究. 研究结果表明, 在波段1500—1600 nm内, 涡旋光模式的限制性损耗在10–8—10–7量级, 模场面积保持在40 μm2, 非线性系数在10–3量级. 通过改变光纤中心空气孔的大小, 能够实现特定波段的色散平坦趋势, 当中心空气孔为1.9 μm时, 光纤能够在1500—1800 nm波段保持色散平坦, 色散系数维持在63.51—65.42 ps·nm–1·km–1之间.
    In an optical fiber communication system, vortex beams have aroused great interest in the last several decades. Vortex beams possess many intriguing properties. For example, they have the ability to carry orbital angular momentum (OAM) which is mutually orthogonal. The OAM is a fundamental physical quantity of light which can be used as information carriers for transmission channel of optical fiber. Combined with the existing multiplexing techniques such as wavelength division multiplexing technique, advanced multilevel amplitude modulation formats, etc., the vortex beams provide an alternative to the increase of the transmission capacity and spectral efficiency of the optical fiber transmission system. Recently, long-length transmission of vortex-beam in optical fiber has been realized and there have also occurred some new designs of optical fiber on vortex beams, such as air-core ring shaped fiber, graded index vortex fiber, multi-ring fiber, and supermode fiber. Photonic crystal fiber (PCF) is flexible in design. Therefore, it is easy to regulate the transmission performance of PCF by adjusting the radius and the pitch of the air holes and so on. In this paper, we propose a newly designed sixfold photonic quasi-crystal fiber (SPQCF) to transmit vortex beams stably. Transmission characteristics of this newly designed fiber are simulated and calculated by using COMSOL multiphysics software. When the wavelength of the incident light is 1550 nm, the effective index difference between the vortex modes in a group is more than 10–4 which is large enough to preclude the LP modes from being formed, and to transmit 7 vector modes (10 OAM modes). Changing the radius and pitch of the air holes, we can regulate the dispersion characteristic and confinement loss of the SPQCF flexibly. At 1550 nm, the confinement loss of the SPQCF maintains 10–8−10–7 which is low enough to confine the vortex beams in the fiber core. When the incident light wavelength of HE21 ranges from 1500 nm to 1800 nm (r0 = 1.9 μm), the dispersion coefficient of the SPQCF is between 63.51−65.42 ps·nm–1·km–1 which tends to be flat. By changing r0, the flat trend is adjusted to different wavelength range. This dispersion characteristic possesses great potential for the transmission of optical solitons. The effective mode area (HE21) is about 40 μm2 and the nonlinear coefficient (HE21) is maintained on the order of 10–3 between 1500−1600 nm. These features suppress the generation of nonlinear effect in the fiber and benefit the transmission of vortex beams. The stable transmission distance is longer than 1 km. In summary, we design a new type of PCF featuring quasi-crystal structure which has a ring shaped fiber core and supports the transmission of vortex beams stably.
      通信作者: 李乙钢, liyigang@nankai.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11474170)和天津市自然科学基金(批准号: 16JCYBJC16900)资助的课题.
      Corresponding author: Li Yi-Gang, liyigang@nankai.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11474170) and the Natural Science Foundation of Tianjin, China (Grant No. 16JCYBJC16900).
    [1]

    Ramachandran S, Kristensen P 2013 Nanophotonics 2 455

    [2]

    Curtis J E, Grier D G 2003 Opt. Lett. 28 872Google Scholar

    [3]

    Tabosa J W R, Petrov D V 1999 Phys. Rev. Lett. 83 4967Google Scholar

    [4]

    Vaziri A, Pan J W, Jennewein T, Weihs G, Zeilinger A 2003 Phys. Rev. Lett. 91 227902Google Scholar

    [5]

    Brunet C, Rusch L A 2016 Opt. Fiber Technol. 31 172Google Scholar

    [6]

    Wong K L G G, Xi X, Kang M S, Lee H W, Russell P 2012 Science 337 446Google Scholar

    [7]

    Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, Willner A E, Ramachandran S 2013 Science 340 1545Google Scholar

    [8]

    Coullet P, Gil L, Rocca F 1989 Opt. Commun. 73 403Google Scholar

    [9]

    Allen L, Beijersbergen M W, Spreeuw R, Woerdman J 1992 Phys. Rev. A 45 8185Google Scholar

    [10]

    McGloin D, Simpson N B, Padgett M J 1998 Appl. Opt. 37 469Google Scholar

    [11]

    Ramachandran S, Kristensen P, Yan M F 2009 Opt. Lett. 34 2525Google Scholar

    [12]

    Li S, Mo Q, Hu X, Du C, Wang J 2015 Opt. Lett. 40 4376Google Scholar

    [13]

    Yan Y, Zhang L, Wang J, Yang J Y, Fazal I M, Ahmed N, Willner A E, Dolinar S J 2012 Opt. Lett. 37 3294Google Scholar

    [14]

    Brunet C, Vaity P, Messaddeq Y, LaRochelle S, Rusch L A 2014 Opt. Express 22 26117Google Scholar

    [15]

    Brunet C, Ung B, Wang L, Messaddeq Y, LaRochelle S, Rusch L A 2015 Opt. Express 23 10553Google Scholar

    [16]

    Li S, Wang J 2013 IEEE Photon. J. 5 7101007Google Scholar

    [17]

    Li S, Wang J 2014 Sci. Rep. 4 3853

    [18]

    Xia C, Bai N, Ozdur I, Zhou X, Li G 2011 Opt. Express 19 16653Google Scholar

    [19]

    Li S, Wang J 2015 Opt. Express 23 18736Google Scholar

    [20]

    Ung B, Vaity P, Wang L, Messaddeq Y, Rusch L, LaRochelle S 2014 Opt. Express 22 18044Google Scholar

    [21]

    Zhang Z, Gan J, Heng X, Wu Y, Li Q, Qian Q, Chen D, Yang Z 2015 Opt. Express 23 29331Google Scholar

    [22]

    Ferrando A, Silvestre E, Andres P, Miret J J, Andrés M V 2001 Opt. Express 9 687Google Scholar

    [23]

    Yue Y, Zhang L, Yan Y, Ahmed N, Yang J Y, Huang H, Ren Y, Dolinar S, Tur M, Willner A E 2012 Opt. Lett. 37 1889Google Scholar

    [24]

    Zhao C, Gan X, Li P, Fang L, Han L, Tu L, Zhao J 2016 J. Lightwave Technol. 34 1206Google Scholar

    [25]

    Zhang H, Zhang W, Xi L, Tang X, Zhang X, Zhang X 2016 IEEE Photon. Technol. Lett. 28 1426Google Scholar

    [26]

    Jin C, Cheng B, Man B, Li Z, Zhang D 2000 Phys. Rev. B 61 10762Google Scholar

    [27]

    Jin C, Meng X, Cheng B, Li Z, Zhang D 2001 Phys. Rev. B 63 195107Google Scholar

  • 图 1  六重准晶涡旋光光子晶体光纤 (a)光纤端面图; (b)折射率分布图

    Fig. 1.  The sixfold photonic quasi-crystal fiber: (a) Cross-section of SPQCF; (b) index profile of SPQCF.

    图 2  光子晶体光纤中涡旋光强度分布以及偏振分布

    Fig. 2.  Intensity and polarization of vortex beams in SPQCF.

    图 3  (a)模式有效折射率(${n_{{\rm{eff}}}}$); (b)模式间有效折射率差($\Delta {n_{{\rm{eff}}}}$)随波长的变化曲线

    Fig. 3.  (a) Effective refractive indices; (b) effective index difference as a function of wavelength for vector modes in SPQCF.

    图 4  HE21模的限制性损耗随波长的变化(不同中心空气孔半径), 插图为1500—1600 nm波段内HE21模的限制性损耗

    Fig. 4.  Confinement loss as a function of wavelength for HE21 mode with different r0, the inset shows the loss between 1500−1600 nm.

    图 5  ${\rm{H}}{{\rm{E}}_{21}}$模色散系数随波长的变化(不同中心空气孔半径), 插图为${r_0}$对涡旋光平坦趋势的影响

    Fig. 5.  Dispersion as a function of wavelength for ${\rm{H}}{{\rm{E}}_{21}}$ with different ${r_0}$, the inset shows the flat trend with di-fferent ${r_0}$

    图 6  (a) HE21模的模场面积; (b) HE21模的非线性系数随波长的变化 (不同中心空气孔半径); (a), (b) 的插图分别为 波段内的模场面积和非线性系数

    Fig. 6.  (a) Effective mode area of HE21, (b) nonlinear coefficient as a function of wavelength for HE21 mode with different r0, the inset shows the (a) effective modes area and (b) nonlinear coefficient between 1500−1600 nm.

    图 7  光纤中不同本征模的${L_{10\;{\rm{ps}}}}$随波长的变化

    Fig. 7.  ${L_{10\;{\rm{ps}}}}$ as a function of wavelength for vortex modes in SPQCF.

  • [1]

    Ramachandran S, Kristensen P 2013 Nanophotonics 2 455

    [2]

    Curtis J E, Grier D G 2003 Opt. Lett. 28 872Google Scholar

    [3]

    Tabosa J W R, Petrov D V 1999 Phys. Rev. Lett. 83 4967Google Scholar

    [4]

    Vaziri A, Pan J W, Jennewein T, Weihs G, Zeilinger A 2003 Phys. Rev. Lett. 91 227902Google Scholar

    [5]

    Brunet C, Rusch L A 2016 Opt. Fiber Technol. 31 172Google Scholar

    [6]

    Wong K L G G, Xi X, Kang M S, Lee H W, Russell P 2012 Science 337 446Google Scholar

    [7]

    Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, Willner A E, Ramachandran S 2013 Science 340 1545Google Scholar

    [8]

    Coullet P, Gil L, Rocca F 1989 Opt. Commun. 73 403Google Scholar

    [9]

    Allen L, Beijersbergen M W, Spreeuw R, Woerdman J 1992 Phys. Rev. A 45 8185Google Scholar

    [10]

    McGloin D, Simpson N B, Padgett M J 1998 Appl. Opt. 37 469Google Scholar

    [11]

    Ramachandran S, Kristensen P, Yan M F 2009 Opt. Lett. 34 2525Google Scholar

    [12]

    Li S, Mo Q, Hu X, Du C, Wang J 2015 Opt. Lett. 40 4376Google Scholar

    [13]

    Yan Y, Zhang L, Wang J, Yang J Y, Fazal I M, Ahmed N, Willner A E, Dolinar S J 2012 Opt. Lett. 37 3294Google Scholar

    [14]

    Brunet C, Vaity P, Messaddeq Y, LaRochelle S, Rusch L A 2014 Opt. Express 22 26117Google Scholar

    [15]

    Brunet C, Ung B, Wang L, Messaddeq Y, LaRochelle S, Rusch L A 2015 Opt. Express 23 10553Google Scholar

    [16]

    Li S, Wang J 2013 IEEE Photon. J. 5 7101007Google Scholar

    [17]

    Li S, Wang J 2014 Sci. Rep. 4 3853

    [18]

    Xia C, Bai N, Ozdur I, Zhou X, Li G 2011 Opt. Express 19 16653Google Scholar

    [19]

    Li S, Wang J 2015 Opt. Express 23 18736Google Scholar

    [20]

    Ung B, Vaity P, Wang L, Messaddeq Y, Rusch L, LaRochelle S 2014 Opt. Express 22 18044Google Scholar

    [21]

    Zhang Z, Gan J, Heng X, Wu Y, Li Q, Qian Q, Chen D, Yang Z 2015 Opt. Express 23 29331Google Scholar

    [22]

    Ferrando A, Silvestre E, Andres P, Miret J J, Andrés M V 2001 Opt. Express 9 687Google Scholar

    [23]

    Yue Y, Zhang L, Yan Y, Ahmed N, Yang J Y, Huang H, Ren Y, Dolinar S, Tur M, Willner A E 2012 Opt. Lett. 37 1889Google Scholar

    [24]

    Zhao C, Gan X, Li P, Fang L, Han L, Tu L, Zhao J 2016 J. Lightwave Technol. 34 1206Google Scholar

    [25]

    Zhang H, Zhang W, Xi L, Tang X, Zhang X, Zhang X 2016 IEEE Photon. Technol. Lett. 28 1426Google Scholar

    [26]

    Jin C, Cheng B, Man B, Li Z, Zhang D 2000 Phys. Rev. B 61 10762Google Scholar

    [27]

    Jin C, Meng X, Cheng B, Li Z, Zhang D 2001 Phys. Rev. B 63 195107Google Scholar

  • [1] 张羚翔, 魏薇, 张志明, 廖文英, 杨振国, 范万德, 李乙钢. 环形光子晶体光纤中涡旋光的传输特性研究. 物理学报, 2017, 66(1): 014205. doi: 10.7498/aps.66.014205
    [2] 李政颖, 孙文丰, 李子墨, 王洪海. 基于色散补偿光纤的高速光纤光栅解调方法. 物理学报, 2015, 64(23): 234207. doi: 10.7498/aps.64.234207
    [3] 廖文英, 范万德, 李园, 陈君, 卜凡华, 李海鹏, 王新亚, 黄鼎铭. 新型全固态准晶体结构大模场光纤特性研究. 物理学报, 2014, 63(3): 034206. doi: 10.7498/aps.63.034206
    [4] 张心贲, 罗兴, 程兰, 李海清, 彭景刚, 戴能利, 李进延. 双零色散光子晶体光纤中可见光超连续谱的产生. 物理学报, 2014, 63(3): 034204. doi: 10.7498/aps.63.034204
    [5] 赵兴涛, 郑义, 韩颖, 周桂耀, 侯峙云, 沈建平, 王春, 侯蓝田. 光子晶体光纤包层可见光及红外宽带色散波产生. 物理学报, 2013, 62(6): 064215. doi: 10.7498/aps.62.064215
    [6] 陈翔, 张心贲, 祝贤, 程兰, 彭景刚, 戴能利, 李海清, 李进延. 色散补偿光子晶体光纤结构参数对其色散的影响. 物理学报, 2013, 62(4): 044222. doi: 10.7498/aps.62.044222
    [7] 王伟, 杨博, 宋鸿儒, 范岳. 八边形高双折射双零色散点光子晶体光纤特性分析. 物理学报, 2012, 61(14): 144601. doi: 10.7498/aps.61.144601
    [8] 王伟, 杨博. 菱形纤芯光子晶体光纤色散与双折射特性分析. 物理学报, 2012, 61(6): 064601. doi: 10.7498/aps.61.064601
    [9] 赵岩, 施伟华, 姜跃进. 中心外缺陷对带隙型光子晶体光纤色散特性的影响. 物理学报, 2010, 59(9): 6279-6283. doi: 10.7498/aps.59.6279
    [10] 尹经禅, 肖晓晟, 杨昌喜. 基于光纤四波混频波长转换和色散的慢光实验研究. 物理学报, 2010, 59(6): 3986-3991. doi: 10.7498/aps.59.3986
    [11] 闫海峰, 俞重远, 田宏达, 刘玉敏, 韩利红. 八角光子晶体光纤传输特性与非线性特性研究. 物理学报, 2010, 59(5): 3273-3277. doi: 10.7498/aps.59.3273
    [12] 李林栗, 冯国英, 杨浩, 周国瑞, 周昊, 朱启华, 王建军, 周寿桓. 纳米光纤的色散特性及其超连续谱产生. 物理学报, 2009, 58(10): 7005-7011. doi: 10.7498/aps.58.7005
    [13] 杨倩倩, 侯蓝田. 八边形结构的双折射光子晶体光纤. 物理学报, 2009, 58(12): 8345-8351. doi: 10.7498/aps.58.8345
    [14] 魏东宾, 周桂耀, 赵兴涛, 苑金辉, 孟 佳, 王海云, 侯蓝田. 一种新型的多包层光子晶体光纤的分析方法. 物理学报, 2008, 57(5): 3011-3015. doi: 10.7498/aps.57.3011
    [15] 赵兴涛, 侯蓝田, 刘兆伦, 王 伟, 魏红彦, 马景瑞. 改进的全矢量有效折射率方法分析光子晶体光纤的色散特性. 物理学报, 2007, 56(4): 2275-2280. doi: 10.7498/aps.56.2275
    [16] 娄淑琴, 任国斌, 延凤平, 简水生. 类矩形芯光子晶体光纤的色散与偏振特性. 物理学报, 2005, 54(3): 1229-1234. doi: 10.7498/aps.54.1229
    [17] 任国斌, 王 智, 娄淑琴, 简水生. 高折射率芯Bragg光纤的色散特性研究. 物理学报, 2004, 53(6): 1862-1867. doi: 10.7498/aps.53.1862
    [18] 李曙光, 刘晓东, 侯蓝田. 一种晶体光纤基模色散特性的矢量法分析. 物理学报, 2004, 53(6): 1873-1879. doi: 10.7498/aps.53.1873
    [19] 李曙光, 刘晓东, 侯蓝田. 光子晶体光纤色散补偿特性的数值研究. 物理学报, 2004, 53(6): 1880-1886. doi: 10.7498/aps.53.1880
    [20] 李曙光, 刘晓东, 侯蓝田. 光子晶体光纤的导波模式与色散特性. 物理学报, 2003, 52(11): 2811-2817. doi: 10.7498/aps.52.2811
计量
  • 文章访问数:  6895
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-17
  • 修回日期:  2019-04-09
  • 上网日期:  2019-06-01
  • 刊出日期:  2019-06-05

/

返回文章
返回