搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高非线性光纤正常色散区脉冲尾部非频移分量演化

孙剑 李唐军 王目光 贾楠 石彦超 王春灿 冯素春

引用本文:
Citation:

高非线性光纤正常色散区脉冲尾部非频移分量演化

孙剑, 李唐军, 王目光, 贾楠, 石彦超, 王春灿, 冯素春

Evolution of non-frequency shift components of pulse tail in normal dispersion region of highly nonlinear fiber

Sun Jian, Li Tang-Jun, Wang Mu-Guang, Jia Nan, Shi Yan-Chao, Wang Chun-Can, Feng Su-Chun
PDF
HTML
导出引用
  • 基于广义非线性薛定谔方程(对皮秒双曲正割光脉冲在高非线性光纤(highly nonlinear fiber, HNLF)正常色散区传输时尾部非频移分量的演化情况进行了理论研究. 研究结果表明: 交叉相位调制(cross-phase modulation, XPM)和受激拉曼散射(stimulated Raman scattering, SRS)在其演化过程中起主导作用, 而三阶色散对其直接影响较小. 在XPM效应的作用下, 处于脉冲前沿和后沿尾部的非频移分量逐渐减弱, 其光谱分别发生红移和蓝移, 这一过程具有对称性; SRS会加速前沿尾部非频移分量的减弱过程, 而减缓后沿的减弱过程, 这一现象在脉冲峰值功率较高时更为明显. 从脉冲尾部非频移分量演化角度分析了啁啾脉冲在HNLF正常色散区的光谱和波形特性.
    Supercontinuum generated in normal dispersion region of highly nonlinear fiber (HNLF) is widely used in signal processing and communication benefiting from its good flatness and high coherence. Because of the normal dispersion, optical wave breaking (OWB) occurs when non-frequency shift components and frequency shift components caused by self-phase modulation (SPM) overlap in time domain, and ends when non-frequency shift components disappear. The evolution of non-frequency shift components at the front and rear edge of optical pulse play an essential role in the supercontinuum generation process. In this paper, the evolution of non-frequency shift components in normal dispersion region is numerically calculated and analyzed based on generalized nonlinear Schrödinger equation. The results demonstrate that non-frequency shift components shrink gradually as the pulse propagates in the normal dispersion region. Cross-phase modulation (XPM) and stimulated Raman scattering (SRS) play a major role in this process, while the third-order dispersion imposes little effect on it. Because of XPM, non-frequency shift components at the front and rear edge shrink gradually, and keep red shifting and blue-shifting respectively. The influence of XPM on the non-frequency shift components at both edges is symmetrical. However, the influence of SRS on the evolution of non-frequency-shift components at both edges is asymmetric. At the front edge, SRS transfers the energy from non-frequency shift component to frequency shift component, which is opposite to that at the rear edge. At the front edge, SRS accelerates the shrinking process of the non-frequency shift component, while it slows down the shrinking process at the rear edge. And this asymmetric effect is more obvious when the peak power of the pulse is higher and SRS is more efficient. The evolution of the non-frequency shift components of chirped pulses propagating in the normal dispersion region is studied. Comparing with the unchirped pulse, the non-frequency shift components at the front and rear edge of the chirped pulse have different wavelengths. For the negative chirped pulse, the wavelength spacing between the overlapped frequency-shift components and non-frequency shift components is larger, which is easier to satisfy the SRS gain range. Therefore, the evolution of non-frequency-shift components at the front and rear edge of the negative chirped pulse are more asymmetric due to the higher SRS efficiency. For positive chirped pulses, the wavelength spacing between the overlapped components is difficult to satisfy the SRS gain range. The evolution of non-frequency-shift components in the positive chirped pulses is more symmetrical due to the lower SRS efficiency.
      通信作者: 王目光, mgwang@bjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61775015, 61475015, 61605003)和中央高校基本科研业务费(批准号: 2018JBZ109)资助的课题.
      Corresponding author: Wang Mu-Guang, mgwang@bjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61775015, 61475015, 61605003) and the Fundamental Research Funds for the Central Universities, China (Grant No. 2018JBZ109).
    [1]

    Nguyen-The Q, Matsuura M, Kishi N 2014 IEEE Photon. Technol. Lett. 26 1882Google Scholar

    [2]

    Peacock A C, Campling J, Runge A F J, Ren H, Shen L, Aktas O, Horak P, Healy N, Gibson U J, Ballato J 2018 IEEE J. Select. Top. Quantum Electron. 24 3Google Scholar

    [3]

    Takada K, Yamada H, Okamoto K 1999 Electron. Lett. 35 824Google Scholar

    [4]

    Hu H 2017 Ph. D. Dissertation (Connecticut: University of Connecticut)

    [5]

    Yang T, Dong J, Liao S, Huang D, Zhang X 2013 Opt. Express 21 8508Google Scholar

    [6]

    Ohara T, Takara H, Yamamoto T, Masuda H, Morioka T, Abe M, Takahashi H 2006 J. Lightw. Technol. 24 2311Google Scholar

    [7]

    Yu S, Bao F, Hu H 2018 IEEE Photon. J. 10 1

    [8]

    Wu R, Torres-Company V, Leaird D E, Weiner A M 2013 Opt. Express 21 6045Google Scholar

    [9]

    Husakou A V, Herrmann J 2001 Phys. Rev. Lett. 87 203901Google Scholar

    [10]

    刘楚 2012 博士学位论文(北京: 北京交通大学)

    Liu C 2012 Ph. D. Dissertation (Beijing: Beijing Jiaotong University) (in Chinese)

    [11]

    Dudley J M, Genty G, Coen S 2006 Rev. Mod. Phys. 78 1135Google Scholar

    [12]

    Hilligsøe K M, Andersen T V, Paulsen H N, Nielsen C K, Mølmer K, Keiding S, Kristiansen R, Hansen K P, Larsen J J 2004 Opt. Express 12 1045Google Scholar

    [13]

    Gu X, Kimmel M, Shreenath A, Trebino R, Dudley J, Coen S, Windeler R 2003 Opt. Express 11 2697Google Scholar

    [14]

    Agrawal G P 2006 Nonlinear Fiber Optics (4th Ed.) (San Diego: Claif) p31

    [15]

    Kawanishi S, Takara H, Uchiyama K, Shake I, Mori K 1999 Electron. Lett. 35 826Google Scholar

    [16]

    Tomlinson W J, Stolen R H, Johnson A M 1985 Opt. Lett. 10 457Google Scholar

    [17]

    Finot C, Kibler B, Provost L, Wabnitz S 2008 J. Opt. Soc. Am. B 25 1938Google Scholar

    [18]

    Heidt A M, Hartung A, Bartelt H 2016 Generation of Ultrashort and Coherent Supercontinuum Light Pulses in All-Normal Dispersion Fibers (Berlin: Springer) pp 247-280

    [19]

    Grischkowsky D, Courtens E, Armstrong J A 1973 Phys. Rev. Lett. 31 422Google Scholar

    [20]

    Lin Q, Agrawal G P 2006 Opt. Lett. 31 3086Google Scholar

    [21]

    Cristiani I, Tediosi R, Tartara L, Degiorgio V 2004 Opt. Express 12 124Google Scholar

    [22]

    Zhang Z, Chen L, Bao X 2010 Opt. Express 18 8261Google Scholar

    [23]

    Hult J 2007 IEEE J. Lightw. Technol. 25 3770Google Scholar

  • 图 1  忽略噪声时输入脉冲不同峰值功率条件下, 光脉冲在HNLF 200, 400和600 m处的时谱图

    Fig. 1.  Spectrograms at 200, 400 and 600 m of HNLF with different input peak powers when the noise is ignored.

    图 2  脉冲峰值功率和脉宽为30 W 和1.5 ps 时, 无噪声(第一行)和有噪声(第二行)情况下在光纤200, 400和600 m处的时谱图

    Fig. 2.  Spectrograms at 200, 400 m and 600 m of HNLF without noise (row 1) and with noise (row 2), when the peak power and pulse width are 30 W and 1.5 ps.

    图 3  脉冲峰值功率50 W时不同光纤参数下光脉冲在HNLF 600 m处的时谱图

    Fig. 3.  Spectrograms with different third-order dispersion coefficients and with/without SRS at 600 m of HNLF when peak power is 50 W.

    图 4  脉冲和连续光一同进入HNFL时不同位置的时谱图

    Fig. 4.  Spectrograms of CW and pulse light propagating in HNLF.

    图 5  不同初始啁啾脉冲在HNLF中0, 100, 400和600 m处的时谱图

    Fig. 5.  Spectrograms at the length of 0 m, 100 m, 400 m, 600 m of HNLF with different C.

    图 6  不同初始啁啾脉冲在HNLF中100, 600 m处的波形和光谱

    Fig. 6.  Waveforms and spectra with different C, at l00 and 600 m of HNLF.

  • [1]

    Nguyen-The Q, Matsuura M, Kishi N 2014 IEEE Photon. Technol. Lett. 26 1882Google Scholar

    [2]

    Peacock A C, Campling J, Runge A F J, Ren H, Shen L, Aktas O, Horak P, Healy N, Gibson U J, Ballato J 2018 IEEE J. Select. Top. Quantum Electron. 24 3Google Scholar

    [3]

    Takada K, Yamada H, Okamoto K 1999 Electron. Lett. 35 824Google Scholar

    [4]

    Hu H 2017 Ph. D. Dissertation (Connecticut: University of Connecticut)

    [5]

    Yang T, Dong J, Liao S, Huang D, Zhang X 2013 Opt. Express 21 8508Google Scholar

    [6]

    Ohara T, Takara H, Yamamoto T, Masuda H, Morioka T, Abe M, Takahashi H 2006 J. Lightw. Technol. 24 2311Google Scholar

    [7]

    Yu S, Bao F, Hu H 2018 IEEE Photon. J. 10 1

    [8]

    Wu R, Torres-Company V, Leaird D E, Weiner A M 2013 Opt. Express 21 6045Google Scholar

    [9]

    Husakou A V, Herrmann J 2001 Phys. Rev. Lett. 87 203901Google Scholar

    [10]

    刘楚 2012 博士学位论文(北京: 北京交通大学)

    Liu C 2012 Ph. D. Dissertation (Beijing: Beijing Jiaotong University) (in Chinese)

    [11]

    Dudley J M, Genty G, Coen S 2006 Rev. Mod. Phys. 78 1135Google Scholar

    [12]

    Hilligsøe K M, Andersen T V, Paulsen H N, Nielsen C K, Mølmer K, Keiding S, Kristiansen R, Hansen K P, Larsen J J 2004 Opt. Express 12 1045Google Scholar

    [13]

    Gu X, Kimmel M, Shreenath A, Trebino R, Dudley J, Coen S, Windeler R 2003 Opt. Express 11 2697Google Scholar

    [14]

    Agrawal G P 2006 Nonlinear Fiber Optics (4th Ed.) (San Diego: Claif) p31

    [15]

    Kawanishi S, Takara H, Uchiyama K, Shake I, Mori K 1999 Electron. Lett. 35 826Google Scholar

    [16]

    Tomlinson W J, Stolen R H, Johnson A M 1985 Opt. Lett. 10 457Google Scholar

    [17]

    Finot C, Kibler B, Provost L, Wabnitz S 2008 J. Opt. Soc. Am. B 25 1938Google Scholar

    [18]

    Heidt A M, Hartung A, Bartelt H 2016 Generation of Ultrashort and Coherent Supercontinuum Light Pulses in All-Normal Dispersion Fibers (Berlin: Springer) pp 247-280

    [19]

    Grischkowsky D, Courtens E, Armstrong J A 1973 Phys. Rev. Lett. 31 422Google Scholar

    [20]

    Lin Q, Agrawal G P 2006 Opt. Lett. 31 3086Google Scholar

    [21]

    Cristiani I, Tediosi R, Tartara L, Degiorgio V 2004 Opt. Express 12 124Google Scholar

    [22]

    Zhang Z, Chen L, Bao X 2010 Opt. Express 18 8261Google Scholar

    [23]

    Hult J 2007 IEEE J. Lightw. Technol. 25 3770Google Scholar

  • [1] 史久林, 许锦, 罗宁宁, 王庆, 张余宝, 张巍巍, 何兴道. 水中受激拉曼散射的能量增强及受激布里渊散射的光学抑制. 物理学报, 2019, 68(4): 044201. doi: 10.7498/aps.68.20181548
    [2] 江俊峰, 黄灿, 刘琨, 张永宁, 王双, 张学智, 马喆, 陈文杰, 于哲, 刘铁根. 用于CARS激发源的全光纤飞秒脉冲谱压缩. 物理学报, 2017, 66(20): 204207. doi: 10.7498/aps.66.204207
    [3] 贾楠, 李唐军, 孙剑, 钟康平, 王目光. 高非线性光纤正常色散区利用皮秒脉冲产生超连续谱的相干特性. 物理学报, 2014, 63(8): 084203. doi: 10.7498/aps.63.084203
    [4] 马晓璐, 李培丽, 郭海莉, 张一, 朱天阳, 曹凤娇. 基于单模光纤的交叉相位调制型频率分辨光学开关超短脉冲测量. 物理学报, 2014, 63(24): 240601. doi: 10.7498/aps.63.240601
    [5] 谌鸿伟, 韦会峰, 刘通, 周旋风, 李江, 童维军, 陈子伦, 陈胜平, 侯静, 陆启生. 七芯光子晶体光纤中百瓦量级超连续谱的产生. 物理学报, 2014, 63(4): 044205. doi: 10.7498/aps.63.044205
    [6] 赵原源, 周桂耀, 李建设, 韩颖, 王超, 王伟. V型高双折射光子晶体光纤超连续谱产生的实验研究. 物理学报, 2013, 62(21): 214212. doi: 10.7498/aps.62.214212
    [7] 祝贤, 张心贲, 陈翔, 彭景刚, 戴能利, 李海清, 李进延. 在色散渐减光子晶体光纤中产生超连续谱的实验研究. 物理学报, 2013, 62(9): 094217. doi: 10.7498/aps.62.094217
    [8] 谌鸿伟, 郭良, 靳爱军, 陈胜平, 侯静, 陆启生. 基于光子晶体光纤的百瓦量级超连续谱光源研究. 物理学报, 2013, 62(15): 154207. doi: 10.7498/aps.62.154207
    [9] 李建锋, 周桂耀, 侯蓝田. 光子晶体光纤超连续谱的孤子俘获数值研究. 物理学报, 2012, 61(12): 124203. doi: 10.7498/aps.61.124203
    [10] 靳爱军, 王泽锋, 侯静, 郭良, 姜宗福. 光子晶体光纤反常色散区抽运产生超连续谱的相干特性分析. 物理学报, 2012, 61(12): 124211. doi: 10.7498/aps.61.124211
    [11] 宋锐, 侯静, 陈胜平, 王彦斌, 陆启生. 177.6 W全光纤超连续谱光源. 物理学报, 2012, 61(5): 054217. doi: 10.7498/aps.61.054217
    [12] 刘卫华, 宋啸中, 王屹山, 刘红军, 赵 卫, 刘雪明, 彭钦军, 许祖彦. 飞秒激光脉冲在高非线性光子晶体光纤中产生超连续谱的实验研究. 物理学报, 2008, 57(2): 917-922. doi: 10.7498/aps.57.917
    [13] 陈泳竹, 李玉忠, 徐文成. 色散平坦渐减光纤产生平坦超宽超连续谱的特性研究. 物理学报, 2008, 57(12): 7693-7698. doi: 10.7498/aps.57.7693
    [14] 夏 舸, 黄德修, 元秀华. 正常色散平坦光纤中皮秒抽运脉冲超连续谱的形成研究. 物理学报, 2007, 56(4): 2212-2217. doi: 10.7498/aps.56.2212
    [15] 刘卫华, 王屹山, 刘红军, 段作梁, 赵 卫, 李永放, 彭钦军, 许祖彦. 初始啁啾对飞秒脉冲在光子晶体光纤中超连续谱产生的影响. 物理学报, 2006, 55(4): 1815-1820. doi: 10.7498/aps.55.1815
    [16] 陈泳竹, 李玉忠, 屈 圭, 徐文成. 反常色散平坦光纤产生平坦宽带超连续谱的数值研究. 物理学报, 2006, 55(2): 717-722. doi: 10.7498/aps.55.717
    [17] 王 晶, 时延梅. 光子晶体光纤中高阶非线性效应所致啁啾的研究. 物理学报, 2006, 55(6): 2820-2824. doi: 10.7498/aps.55.2820
    [18] 李曙光, 冀玉领, 周桂耀, 侯蓝田, 王清月, 胡明列, 栗岩峰, 魏志义, 张 军, 刘晓东. 多孔微结构光纤中飞秒激光脉冲超连续谱的产生. 物理学报, 2004, 53(2): 478-483. doi: 10.7498/aps.53.478
    [19] 向望华, 陈晓伟, 谈斌, 张贵忠. 利用单模光纤中的交叉相位调制产生单周期化脉冲的研究. 物理学报, 2004, 53(1): 137-144. doi: 10.7498/aps.53.137
    [20] 张喜和, 王兆民, 万春明. 光纤-氮系统的受激拉曼散射. 物理学报, 2002, 51(6): 1251-1255. doi: 10.7498/aps.51.1251
计量
  • 文章访问数:  7483
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-21
  • 修回日期:  2019-04-17
  • 上网日期:  2019-06-01
  • 刊出日期:  2019-06-05

/

返回文章
返回