搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

在色散渐减光子晶体光纤中产生超连续谱的实验研究

祝贤 张心贲 陈翔 彭景刚 戴能利 李海清 李进延

引用本文:
Citation:

在色散渐减光子晶体光纤中产生超连续谱的实验研究

祝贤, 张心贲, 陈翔, 彭景刚, 戴能利, 李海清, 李进延

Experimental study on supercontinuum generation in zero-dispersion wavelength decreasing photonic crystal fiber

Zhu Xian, Zhang Xin-Ben, Xiang Chen, Peng Jing-Gang, Dai Neng-Li, Li Hai-Qing, Li Jin-Yan
PDF
导出引用
  • 本文利用非线性偏振锁模激光器产生的重复频率50 MHz, 脉宽为1.8 ps的脉冲分别抽运外径均匀和色散渐减两种高非线性光子晶体光纤, 在三阶非线性效应 (自相位调制、交叉相位调制、四波混频和受激拉曼散效应等) 和色散共同作用下得到扩展至蓝光部分的超连续谱. 模拟了光谱在色散渐减光纤和均匀光纤中的展宽过程, 通过对比均匀光纤发现色散渐减光纤在调控色散, 加强拉曼孤子和色散波的群速度匹配条件, 产生超带宽光谱方面具有很大优势. 实验利用20 m长的色散渐减光纤, 得到了406.1至671.8 nm的可见光波段增强的较为平坦的超连续谱.
    We have carried out experimentally the supercontinuum generation in GeO2-doped-core uniform photonic crystal fiber and zero-dispersion wavelength-decreasing photonic crystal fiber with pump pulses 1.8 ps operating at 1040 nm. Dispersion and nonlinear effects such as cross-phase modulation, four-wave mixing, modulation instability play a crucial role as they extend the supercontinuum towards short wavelength side. Zero-dispersion wavelength-decreasing photonic crystal fiber can improve group-velocity matching between solitons and dispersive waves deduced from numerical simulation of the evolution of spectra generated in a taper and uniform fiber. We obtained experimentally a spectrum expanding to the blue side and the power variation is indeed of 10 dB over a spectral range of 165.7 nm (between 4061 and 6718 nm) in the taper fiber.
    [1]

    Russell P 2003 science 299 358

    [2]

    Ranka J K, Windeler R S, Stentz A J 2000 Opt. Lett. 25 25

    [3]

    Roy S, Chaudhuri P R 2009 Opt. Commun. 282 3448

    [4]

    Tombelaine V, Leproux P, Couderc V, Barthelemy A 2006 IEEE Photonic Tech L 18 2466

    [5]

    Schreiber T, Andersen T V, Schimpf D, Limpert J, Tunnermann A 2005 Opt. Express 13 9556

    [6]

    Frosz M H 2006 Supercontinuum generation in photonic crystal fibres- Modelling and dispersion engineering for spectral shaping (Denmark: COM, DTU) p3

    [7]

    Demircan A, Bandelow U 2007 Appl. Phys. B-Lasers O 86 31

    [8]

    Lesvigne C, Couderc V, Tonello A, Leproux P, Barthelemy A, Lacroix S, Druon F, Blandin P, Hanna M, Georges P 2007 Opt. Lett. 32 2173

    [9]

    Serebryannikov E E, Zheltikov A M 2007 Opt. Commun. 274 433

    [10]

    Dudley J M, Genty G, Coen S 2006 Rev. Mod. Phys. 78 1135

    [11]

    Hu M L, Wang Q Y, Li Y F, Wang Z, Zhang Z G, Chai L, Zhang R B 2004 Acta Phys. Sin. 53 4243 (in Chinese) [胡明列, 王清月, 栗岩峰, 王专, 张志刚, 柴路, 章若冰 2004 物理学报 53 4243]

    [12]

    Li S G, Ji Y L, Zhou G Y, Hou L T, Wang Q Y, Hu M L, Li Y F, Wei Z Y, Zhang J, Liu X D 2004 Acta Phys. Sin. 53 478 (in Chinese) [李曙光, 冀玉领, 周桂耀, 侯蓝田, 王清月, 胡明列, 栗岩峰, 魏志义, 张军, 刘晓东 2004 物理学报 53 478]

    [13]

    Hu M L, Li Y F, Chai L, Xing Q, Doronina L V, Ivanov A A, Wang C Y, Zheltikov A M 2008 Opt. Express 16 11176

    [14]

    Liu W H, Song X Z, Wang Y S, Liu H J, Zhao W, Liu X M, Peng Q J, Xu Z Y 2008 Acta Phys. Sin. 57 917 (in Chinese) [刘卫华, 宋啸中, 王屹山, 刘红军, 赵卫, 刘雪明, 彭钦军, 许祖彦 2008 物理学报 57 917]

    [15]

    Travers J C 2010 Journal of Opt. 12 113001

    [16]

    Sorensen S T, Judge A, Thomsen C L, Bang O 2011 Opt. Lett. 36 816

    [17]

    Stark S P, Podlipensky A, Joly N Y, Russel P S l 2010 JOSA B 27 592

    [18]

    Cascante-Vindas J, Diez A, Cruz J L, Andres M V 2010 Opt. Express 18 14535

    [19]

    Wadsworth W J, Ortigosa-Blanch A, Knight J C, Birks T A, Man T P M, Russell P S 2002 JOSA B 19 2148

    [20]

    Kudlinski A, Bouwmans G, Vanvincq O, Quiquempois Y, Rouge A Le, Bigot L, Melin G, Mussot A 2009 Opt. Lett. 34 3631

    [21]

    Labruyére A, Leproux P, Couderc V, Tombelaine V, Kobelke J, Schuster K, Bartelt H, Hilaire S, Huss G, Melin G 2010 IEEE Photonic Tech L 22 1259

    [22]

    Cascante-Vindas J, Torres-Peiro S, Diez A, Andres M V 2010 Appl. Phys. B-Laers O 98 371

  • [1]

    Russell P 2003 science 299 358

    [2]

    Ranka J K, Windeler R S, Stentz A J 2000 Opt. Lett. 25 25

    [3]

    Roy S, Chaudhuri P R 2009 Opt. Commun. 282 3448

    [4]

    Tombelaine V, Leproux P, Couderc V, Barthelemy A 2006 IEEE Photonic Tech L 18 2466

    [5]

    Schreiber T, Andersen T V, Schimpf D, Limpert J, Tunnermann A 2005 Opt. Express 13 9556

    [6]

    Frosz M H 2006 Supercontinuum generation in photonic crystal fibres- Modelling and dispersion engineering for spectral shaping (Denmark: COM, DTU) p3

    [7]

    Demircan A, Bandelow U 2007 Appl. Phys. B-Lasers O 86 31

    [8]

    Lesvigne C, Couderc V, Tonello A, Leproux P, Barthelemy A, Lacroix S, Druon F, Blandin P, Hanna M, Georges P 2007 Opt. Lett. 32 2173

    [9]

    Serebryannikov E E, Zheltikov A M 2007 Opt. Commun. 274 433

    [10]

    Dudley J M, Genty G, Coen S 2006 Rev. Mod. Phys. 78 1135

    [11]

    Hu M L, Wang Q Y, Li Y F, Wang Z, Zhang Z G, Chai L, Zhang R B 2004 Acta Phys. Sin. 53 4243 (in Chinese) [胡明列, 王清月, 栗岩峰, 王专, 张志刚, 柴路, 章若冰 2004 物理学报 53 4243]

    [12]

    Li S G, Ji Y L, Zhou G Y, Hou L T, Wang Q Y, Hu M L, Li Y F, Wei Z Y, Zhang J, Liu X D 2004 Acta Phys. Sin. 53 478 (in Chinese) [李曙光, 冀玉领, 周桂耀, 侯蓝田, 王清月, 胡明列, 栗岩峰, 魏志义, 张军, 刘晓东 2004 物理学报 53 478]

    [13]

    Hu M L, Li Y F, Chai L, Xing Q, Doronina L V, Ivanov A A, Wang C Y, Zheltikov A M 2008 Opt. Express 16 11176

    [14]

    Liu W H, Song X Z, Wang Y S, Liu H J, Zhao W, Liu X M, Peng Q J, Xu Z Y 2008 Acta Phys. Sin. 57 917 (in Chinese) [刘卫华, 宋啸中, 王屹山, 刘红军, 赵卫, 刘雪明, 彭钦军, 许祖彦 2008 物理学报 57 917]

    [15]

    Travers J C 2010 Journal of Opt. 12 113001

    [16]

    Sorensen S T, Judge A, Thomsen C L, Bang O 2011 Opt. Lett. 36 816

    [17]

    Stark S P, Podlipensky A, Joly N Y, Russel P S l 2010 JOSA B 27 592

    [18]

    Cascante-Vindas J, Diez A, Cruz J L, Andres M V 2010 Opt. Express 18 14535

    [19]

    Wadsworth W J, Ortigosa-Blanch A, Knight J C, Birks T A, Man T P M, Russell P S 2002 JOSA B 19 2148

    [20]

    Kudlinski A, Bouwmans G, Vanvincq O, Quiquempois Y, Rouge A Le, Bigot L, Melin G, Mussot A 2009 Opt. Lett. 34 3631

    [21]

    Labruyére A, Leproux P, Couderc V, Tombelaine V, Kobelke J, Schuster K, Bartelt H, Hilaire S, Huss G, Melin G 2010 IEEE Photonic Tech L 22 1259

    [22]

    Cascante-Vindas J, Torres-Peiro S, Diez A, Andres M V 2010 Appl. Phys. B-Laers O 98 371

计量
  • 文章访问数:  2424
  • PDF下载量:  886
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-09-29
  • 修回日期:  2012-11-28
  • 刊出日期:  2013-05-05

在色散渐减光子晶体光纤中产生超连续谱的实验研究

  • 1. 武汉光电国家实验室, 华中科技大学光电子科学与工程学院, 武汉 430074

摘要: 本文利用非线性偏振锁模激光器产生的重复频率50 MHz, 脉宽为1.8 ps的脉冲分别抽运外径均匀和色散渐减两种高非线性光子晶体光纤, 在三阶非线性效应 (自相位调制、交叉相位调制、四波混频和受激拉曼散效应等) 和色散共同作用下得到扩展至蓝光部分的超连续谱. 模拟了光谱在色散渐减光纤和均匀光纤中的展宽过程, 通过对比均匀光纤发现色散渐减光纤在调控色散, 加强拉曼孤子和色散波的群速度匹配条件, 产生超带宽光谱方面具有很大优势. 实验利用20 m长的色散渐减光纤, 得到了406.1至671.8 nm的可见光波段增强的较为平坦的超连续谱.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回