搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高非线性光纤正常色散区利用皮秒脉冲产生超连续谱的相干特性

贾楠 李唐军 孙剑 钟康平 王目光

引用本文:
Citation:

高非线性光纤正常色散区利用皮秒脉冲产生超连续谱的相干特性

贾楠, 李唐军, 孙剑, 钟康平, 王目光

Coherence properties of supercontinuum generated by a picosecond pulse in normal dispersion region of highly nonlinear fiber

Jia Nan, Li Tang-Jun, Sun Jian, Zhong Kang-Ping, Wang Mu-Guang
PDF
导出引用
  • 使用复互相干度的定义对时域光波分裂前后以及不同输入噪声、不同初始啁啾和波形下抽运脉冲在高非线性光纤中产生的超连续谱的相干度进行了数值计算,得到了光波分裂前后和不同输入噪声下生成的超连续谱的演化和相干性变化. 结果表明:皮秒脉冲在高非线性光纤正常色散区产生超连续谱的相干性主要受到系统中噪声占比的影响,其中由光波分裂生成的频谱旁瓣的相干度低于由自相位调制生成的中心频谱的相干度;抽运脉冲啁啾和波形对在高非线性光纤正常色散区产生超连续谱的相干性的影响不明显. 若想获得高相干的超连续谱,需要采用低噪声的脉冲进行抽运;若获得大谱宽高相干度的超连续谱,则需要合理选择皮秒脉冲的功率.
    The coherence properties of the supercontinuum generated by a picosecond pulse in normal dispersion region of highly nonlinear fiber are numerically calculated and analyzed at different input noise powers by introducing the definition of the complex degree of mutual coherence. The results show that the coherence of the generated supercontinuum is affected by the noise ratio of the picosecond pulse. The coherence of the spectrum sidelobes generated by optical wave breaking is lower than that of the center part of the spectrum. The chirp of pulse and shape of pulse do not have an obvious effect on the coherence of the broaden spectrum. Low noise power input is required to obtain high coherent supercontinuum, and the pump power and waveshape should be optimized to obtain the wide bandwidth and high coherent supercontinuum.
    • 基金项目: 国家自然科学基金(批准号:60807003)、北京高等学校青年英才计划(批准号:YET-2013-452)、新世纪优秀人才支持计划(批准号:NCET-09-0209)和北京市科技新星(批准号:2008A026)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 60807003), the Young Elite Teacher Project of Beijing Higher Education, China (Grant No. YET-2013-452), the Program for New Century Excellent Talents in University, China (Grant No. NCET-09-0209), and the Beijing Nova Program, China (Grant No. 2008A026).
    [1]

    Lin C,Stolen R 1976 Appl. Phys. Lett. 28 216

    [2]

    Anderson D, Desaix M, Lisak M, Quiroga-Teixeiro M L 1992 JOSA B 9 1358

    [3]

    Agrawal G P 2007 Nonlinear Fiber Optics (4th Ed.) (San Diego: Claif) p31

    [4]

    Taccheo S, Ennser K 2002 IEEE Photon. Technol. Lett. 14 1100

    [5]

    Dudley J M, Coen S 2002 Opt. Lett. 27 1180

    [6]

    Nakazawa M, Tamura K, Kubota H, Yoshida E 1998 Opt. Fiber Technol. 4 215

    [7]

    Gu X, Kimmel M, Shreenath A, Trebino R, Dudley J, Coen S, Windeler R 2013 Opt. Express 11 2697

    [8]

    Jin A J, Wang Z F, Hou J, Guo L, Jiang Z F 2012 Acta Phys. Sin. 61 124211 (in Chinese) [靳爱军, 王泽锋, 侯静, 郭良, 姜宗福 2012 物理学报 61 124211]

    [9]

    Li Y, Hou J, Wang Y B, Jin A J, Jiang Z F 2012 Acta Phys. Sin. 61 094212 (in Chinese) [李荧, 侯静, 王彦斌, 靳爱军, 姜宗福 2012 物理学报 61 094212]

    [10]

    Liu S L, Chen D N, Liu W, Niu H B 2013 Acta Phys. Sin. 62 184210 (in Chinese) [刘双龙, 陈丹妮, 刘伟, 牛憨笨 2013 物理学报 62 184210]

    [11]

    Song R, Hou J, Wang Z F, Xiao R, Lu Q S 2013 Chin. Phys. B 22 084206

    [12]

    Li P, Shi L, Mao Q H 2013 Chin. Phys. B 22 074204

    [13]

    Smith R G 1972 Appl. Opt. 11 2489

    [14]

    Kobtsev Serguei M, Smirnov Serguei V 2005 Opt. Express 13 6912

  • [1]

    Lin C,Stolen R 1976 Appl. Phys. Lett. 28 216

    [2]

    Anderson D, Desaix M, Lisak M, Quiroga-Teixeiro M L 1992 JOSA B 9 1358

    [3]

    Agrawal G P 2007 Nonlinear Fiber Optics (4th Ed.) (San Diego: Claif) p31

    [4]

    Taccheo S, Ennser K 2002 IEEE Photon. Technol. Lett. 14 1100

    [5]

    Dudley J M, Coen S 2002 Opt. Lett. 27 1180

    [6]

    Nakazawa M, Tamura K, Kubota H, Yoshida E 1998 Opt. Fiber Technol. 4 215

    [7]

    Gu X, Kimmel M, Shreenath A, Trebino R, Dudley J, Coen S, Windeler R 2013 Opt. Express 11 2697

    [8]

    Jin A J, Wang Z F, Hou J, Guo L, Jiang Z F 2012 Acta Phys. Sin. 61 124211 (in Chinese) [靳爱军, 王泽锋, 侯静, 郭良, 姜宗福 2012 物理学报 61 124211]

    [9]

    Li Y, Hou J, Wang Y B, Jin A J, Jiang Z F 2012 Acta Phys. Sin. 61 094212 (in Chinese) [李荧, 侯静, 王彦斌, 靳爱军, 姜宗福 2012 物理学报 61 094212]

    [10]

    Liu S L, Chen D N, Liu W, Niu H B 2013 Acta Phys. Sin. 62 184210 (in Chinese) [刘双龙, 陈丹妮, 刘伟, 牛憨笨 2013 物理学报 62 184210]

    [11]

    Song R, Hou J, Wang Z F, Xiao R, Lu Q S 2013 Chin. Phys. B 22 084206

    [12]

    Li P, Shi L, Mao Q H 2013 Chin. Phys. B 22 074204

    [13]

    Smith R G 1972 Appl. Opt. 11 2489

    [14]

    Kobtsev Serguei M, Smirnov Serguei V 2005 Opt. Express 13 6912

计量
  • 文章访问数:  3973
  • PDF下载量:  436
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-07
  • 修回日期:  2013-12-15
  • 刊出日期:  2014-04-05

高非线性光纤正常色散区利用皮秒脉冲产生超连续谱的相干特性

  • 1. 北京交通大学光波技术研究所, 全光网络与现代通信网教育部重点实验室, 北京 100044
    基金项目: 国家自然科学基金(批准号:60807003)、北京高等学校青年英才计划(批准号:YET-2013-452)、新世纪优秀人才支持计划(批准号:NCET-09-0209)和北京市科技新星(批准号:2008A026)资助的课题.

摘要: 使用复互相干度的定义对时域光波分裂前后以及不同输入噪声、不同初始啁啾和波形下抽运脉冲在高非线性光纤中产生的超连续谱的相干度进行了数值计算,得到了光波分裂前后和不同输入噪声下生成的超连续谱的演化和相干性变化. 结果表明:皮秒脉冲在高非线性光纤正常色散区产生超连续谱的相干性主要受到系统中噪声占比的影响,其中由光波分裂生成的频谱旁瓣的相干度低于由自相位调制生成的中心频谱的相干度;抽运脉冲啁啾和波形对在高非线性光纤正常色散区产生超连续谱的相干性的影响不明显. 若想获得高相干的超连续谱,需要采用低噪声的脉冲进行抽运;若获得大谱宽高相干度的超连续谱,则需要合理选择皮秒脉冲的功率.

English Abstract

参考文献 (14)

目录

    /

    返回文章
    返回