搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于磁液变形镜生成弯曲轨迹自加速类贝塞尔光束

魏祥 吴智政 曹战 王园园 DzikiMbemba

引用本文:
Citation:

基于磁液变形镜生成弯曲轨迹自加速类贝塞尔光束

魏祥, 吴智政, 曹战, 王园园, DzikiMbemba

Shaping self-accelerating Bessel-like optical beams along arbitrary trajectories by magnetic fluid deformable mirror

Wei Xiang, Wu Zhi-Zheng, Cao Zhan, Wang Yuan-Yuan, Dziki Mbemba
PDF
HTML
导出引用
  • 随着激光技术的发展, 无衍射光束的应用领域不断拓展. 具有自加速特性的类贝塞尔光束, 能够在保持贝塞尔光束的无衍射性下实现主瓣沿着弯曲轨迹传播. 本文研究基于磁液变形镜来生成弯曲轨迹可控的自加速类贝塞尔光束. 磁液变形镜具有镜面变形幅值大、制造成本低、镜面连续光滑、驱动器易于拓展等优点, 并且克服了传统变形镜驱动器间相对行程较小的缺点, 从而有利于生成理想的锥形面. 首先, 本文通过数学几何分析来预测类贝塞尔光束的弯曲轨迹; 然后再利用磁液变形镜拟合相应面形; 最后, 搭建基于磁液变形镜的自适应光学实验平台来生成沿抛物线轨迹的自加速类贝塞尔光束, 实验结果验证了所建模型以及类贝塞尔光束沿预定抛物线轨迹传播的准确性, 并且通过快速修改参数实现对光束轨迹的微调.
    With the development of laser technology, the application scope of nondiffracting beams, such as Bessel beams, Mathieu beams, cosine beams, and parabolic beams, which remain invariant along their propagation, continues to expand. During its propagation, the main lobes of these beams tend to bend towards off-axis position, which is called self-accelerating (or self-bending) property. A Bessel-like beam with self-acceleration can realize the propagation of the main lobe along a curved trajectory while maintaining the non-diffraction. Because of the above property, Bessel-like beams have been utilized in various areas such as guiding particles along arbitrarily curved trajectories, self-accelerating beams in nonlinear medium, plasma guidance, and laser-assisted guiding of electric discharges around objects. In this paper, we propose a method of bending the trajectory of Bessel-like beams by using a magnetic fluid deformable mirror (MFDM) instead of traditional spatial light modulator (SLM) and Pancharatnam-Berry (PB) phase manipulation. The MFDM provides a method without pixelation, where all parameters can be rapidly modified for fine-tuning. Furthermore, compared with the conventional deformable mirror, the MFDM has the advantages of a continuous and smooth mirror surface, large shape deformation, low manufacture cost, easy extension, and large inter-actuator stroke. Therefore, it is easy for the MFDM to generate the ideal shape of an axicon. Firstly, according to geometric analysis, the asymmetrical mirror profile to produce a self-accelerating Bessel-like optical beam is proposed. The proposed mirror profile can be used to compensate for the difference in optical path length for each annular slice of the axicon. If a collimated Gaussian beam is incident on the mirror combining the axicon and the asymmetrical mirror profiles, which can obtain Bessel-like beams with arbitrarily curved trajectories. Secondly, the resultant of the self-accelerating Bessel-like beams along parabolic trajectories is validated by the simulation in MATLAB. Finally, a prototype of MFDM consisting of the dual-layer arrays of miniature electromagnetic coils, a Maxwell coil and the magnetic fluid filled in a circular container is fabricated for the experiment. The experimental results show that the Bessel-like beams propagate along the parabolic trajectories, with the MFDM used, and the accuracy of the curved trajectories is verified. The proposed method in this paper opens a new experimental way to the study of Bessel-like beam; the theoretical approach can also be generalized mathematically for other non-paraxial beam propagation.
      通信作者: 吴智政, zhizhengwu@shu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51675321)、上海市自然科学基金(批准号: 15ZR1415800)和上海市教委重点创新项目(批准号: 14ZZ092)资助的课题.
      Corresponding author: Wu Zhi-Zheng, zhizhengwu@shu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51675321), the Natural Science Foundation of Shanghai, China (Grant No. 15ZR1415800), and the Innovation Program of Shanghai Municipal Education Commission (Grant No. 14ZZ092).
    [1]

    Durnin J 1987 J. Opt. Soc. 4 651Google Scholar

    [2]

    Hu Y, Nie J, Sun K, Ye Q, Wang L 2017 Opt. Commun. 394 108Google Scholar

    [3]

    Nadgaran H, Fallah R 2015 Opt. Commun. 341 160Google Scholar

    [4]

    Dolev I, Libster A, Arie A 2012 Appl. Phys. Lett. 101 101109Google Scholar

    [5]

    Siviloglou G A, Christodoulides D N 2007 Opt. Lett. 32 979Google Scholar

    [6]

    Zhao J, Zhang P, Deng D, Liu J, Gao Y, Chremmos I D, Efremidis N K, Christodoulides D N, Chen Z 2013 Opt. Lett. 38 498Google Scholar

    [7]

    Chremmos I D, Chen Z, Christodoulides D N, Efremidis N K 2012 Opt. Lett. 37 5003Google Scholar

    [8]

    Jarutis V, Matijošius A, Di Trapani P, Piskarskas A 2009 Opt. Lett. 34 2129Google Scholar

    [9]

    Zhao Z, Zang W, Tian J 2016 J. Optics-UK 18 025607Google Scholar

    [10]

    Dolev I, Kaminer I, Shapira A, Segev M, Arie A 2012 Phys. Rev. Lett. 108 113903Google Scholar

    [11]

    Polynkin P, Kolesik M, Moloney J V, Siviloglou G A, Christodoulides D N 2009 Science 324 229Google Scholar

    [12]

    Clerici M, Hu Y, Lassonde P, Milián C, Couairon A, Christodoulides D N, Chen Z, Razzari L, Vidal F, Légaré F, Faccio D, Morandotti R 2015 Sci. Adv. 1 e1400111

    [13]

    Durnin J, Miceli Jr J J, Eberly J H 1987 Phys. Rev. Lett. 58 1499Google Scholar

    [14]

    Vieira T A, Zamboni-Rached M, Gesualdi M R 2014 Opt. Commun. 315 374Google Scholar

    [15]

    Herman R M, Wiggins T A 1991 J. Opt. Soc. Am. A 8 932Google Scholar

    [16]

    Cox A J, Dibble D C 1992 J. Opt. Soc. Am. A 9 282Google Scholar

    [17]

    Dudutis J, GeČys P, RaČiukaitis G 2016 Opt. Express 24 28433Google Scholar

    [18]

    Wu G, Wang F, Cai Y 2014 Phys. Rev. A 89 043807Google Scholar

    [19]

    赵娟莹, 邓冬梅, 张泽, 刘京郊, 姜东升 2014 物理学报 63 044204

    Zhao J Y, Deng D M, Zhang Z, Liu J J, Jiang D S 2014 Acta Phys. Sin. 63 044204

    [20]

    Chen J S, Jia J, Chu D 2017 Chin. Opt. Lett. 15 100901Google Scholar

    [21]

    陈欢, 凌晓辉, 何武光, 李钱光, 易煦农 2017 物理学报 66 044203

    Chen H, Ling X H, He W G, Li Q G, Yi X N 2017 Acta Phys. Sin. 66 044203

    [22]

    Wu Z, Iqbal A, Amara F B 2012 Modeling and Control of Magnetic Fluid Deformable Mirrors for Adaptive Optics Systems (Springer Science & Business Media)

    [23]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [24]

    He Y, Liu Z, Liu Y, Zhou J, Ke Y, Luo H, Wen S 2015 Opt. Lett. 40 5506Google Scholar

    [25]

    Zhou J, Liu Y, Ke Y, Luo H, Wen S 2015 Opt. Lett. 40 3193Google Scholar

    [26]

    Liu Y, Ke Y, Zhou J, Liu Y, Luo H, Wen S, Fan D 2017 Sci. Rep. 7 44096Google Scholar

    [27]

    Pampaloni F, Enderlein J 2004 arXiv: physics/0410021

    [28]

    Kamilov U S, Papadopoulos I N, Shoreh M H, Goy A, Vonesch C, Unser M, Psaltis D 2015 Optica 2 517Google Scholar

    [29]

    Brousseau D, Drapeau J, Piché M, Borra E F 2011 Appl. Opt. 50 4005Google Scholar

    [30]

    Wu Z, Kong X, Zhang Z, Wu J, Wang T, Liu M 2017 Micromachines 8 72Google Scholar

    [31]

    Yen Y T, Lu T Y, Lee Y C, Yu C C, Tsai Y C, Tseng Y C, Chen H L 2014 ACS Appl. Mater. Inter. 6 4292Google Scholar

  • 图 1  经叠加轮廓后弯曲类贝塞尔光束中心光瓣的传播轨迹(红色)

    Fig. 1.  The propagation trajectory of the center lobe of a bended Bessel-like beam through the superimposed profile (in red).

    图 2  偏移点几何关系分析 (a) 薄环上任意点与偏移点的光程; (b)偏移点与薄环的最长光程

    Fig. 2.  Off-axis point geometric analysis: (a) The distance between any point on the thin ring and the off-axis point; (b) the longest distance between the off-axis point and the point on the thin ring.

    图 3  镜面轮廓

    Fig. 3.  Mirror profile.

    图 4  沿抛物线轨迹的自加速类贝塞尔光束仿真 (a) 数值模拟类贝塞尔光束传输的侧面图; (b) 弯曲轨迹类贝塞尔光束在传播距离$z = 4{\rm{0 \;cm}}$处的光强; (c)—(f) 图(a)中不同传播距离处光强的横截面分布

    Fig. 4.  The simulation of self-accelerating Bessel-like beam along a parabolic trajectory: (a) Numerically simulated side-view propagation of the generated beam; (b) intensity of a bended Bessel-like beam when propagation distance $z = 4{\rm{0 \;cm}}$; (c)−(f) cross-sectional images of Bessel-like beam along different distance.

    图 5  磁液变形镜装置 (a) 实物图; (b) 结构示意图

    Fig. 5.  Assembly of the prototype MFDM: (a) Actual diagram; (b) schematic diagram.

    图 6  基于波前传感器的磁液变形镜镜面控制实验平台 (a) 光路示意图; (b) 实物图

    Fig. 6.  Layout of the experimental system setup based on the wavefront sensor: (a) Schematic diagram of optical path; (b) actual diagram.

    图 7  波前传感器检测到的波前轮廓(左图: 主视图; 右图: 三维视图) (a) 初始面形; (b)轴棱锥轮廓; (c) 镜面轮廓; (d) 混合轴棱锥和镜面轮廓后的面形轮廓

    Fig. 7.  Wavefront detected by the wavefront sensor (left: main view; right: 3D view): (a) Initial wavefront; (b) an axicon profile; (c) mirror profile; (d) the combination of both axicon and mirror profile.

    图 8  取四个不同z值的实验结果横截面图

    Fig. 8.  Experimental cross-section profiles for four different values of z.

    图 9  理论和实际测得的光束传播轨迹相比较

    Fig. 9.  Comparison between numerical and experimental demonstrations of deflection of the central spot of a bended Bessel-like beam.

  • [1]

    Durnin J 1987 J. Opt. Soc. 4 651Google Scholar

    [2]

    Hu Y, Nie J, Sun K, Ye Q, Wang L 2017 Opt. Commun. 394 108Google Scholar

    [3]

    Nadgaran H, Fallah R 2015 Opt. Commun. 341 160Google Scholar

    [4]

    Dolev I, Libster A, Arie A 2012 Appl. Phys. Lett. 101 101109Google Scholar

    [5]

    Siviloglou G A, Christodoulides D N 2007 Opt. Lett. 32 979Google Scholar

    [6]

    Zhao J, Zhang P, Deng D, Liu J, Gao Y, Chremmos I D, Efremidis N K, Christodoulides D N, Chen Z 2013 Opt. Lett. 38 498Google Scholar

    [7]

    Chremmos I D, Chen Z, Christodoulides D N, Efremidis N K 2012 Opt. Lett. 37 5003Google Scholar

    [8]

    Jarutis V, Matijošius A, Di Trapani P, Piskarskas A 2009 Opt. Lett. 34 2129Google Scholar

    [9]

    Zhao Z, Zang W, Tian J 2016 J. Optics-UK 18 025607Google Scholar

    [10]

    Dolev I, Kaminer I, Shapira A, Segev M, Arie A 2012 Phys. Rev. Lett. 108 113903Google Scholar

    [11]

    Polynkin P, Kolesik M, Moloney J V, Siviloglou G A, Christodoulides D N 2009 Science 324 229Google Scholar

    [12]

    Clerici M, Hu Y, Lassonde P, Milián C, Couairon A, Christodoulides D N, Chen Z, Razzari L, Vidal F, Légaré F, Faccio D, Morandotti R 2015 Sci. Adv. 1 e1400111

    [13]

    Durnin J, Miceli Jr J J, Eberly J H 1987 Phys. Rev. Lett. 58 1499Google Scholar

    [14]

    Vieira T A, Zamboni-Rached M, Gesualdi M R 2014 Opt. Commun. 315 374Google Scholar

    [15]

    Herman R M, Wiggins T A 1991 J. Opt. Soc. Am. A 8 932Google Scholar

    [16]

    Cox A J, Dibble D C 1992 J. Opt. Soc. Am. A 9 282Google Scholar

    [17]

    Dudutis J, GeČys P, RaČiukaitis G 2016 Opt. Express 24 28433Google Scholar

    [18]

    Wu G, Wang F, Cai Y 2014 Phys. Rev. A 89 043807Google Scholar

    [19]

    赵娟莹, 邓冬梅, 张泽, 刘京郊, 姜东升 2014 物理学报 63 044204

    Zhao J Y, Deng D M, Zhang Z, Liu J J, Jiang D S 2014 Acta Phys. Sin. 63 044204

    [20]

    Chen J S, Jia J, Chu D 2017 Chin. Opt. Lett. 15 100901Google Scholar

    [21]

    陈欢, 凌晓辉, 何武光, 李钱光, 易煦农 2017 物理学报 66 044203

    Chen H, Ling X H, He W G, Li Q G, Yi X N 2017 Acta Phys. Sin. 66 044203

    [22]

    Wu Z, Iqbal A, Amara F B 2012 Modeling and Control of Magnetic Fluid Deformable Mirrors for Adaptive Optics Systems (Springer Science & Business Media)

    [23]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [24]

    He Y, Liu Z, Liu Y, Zhou J, Ke Y, Luo H, Wen S 2015 Opt. Lett. 40 5506Google Scholar

    [25]

    Zhou J, Liu Y, Ke Y, Luo H, Wen S 2015 Opt. Lett. 40 3193Google Scholar

    [26]

    Liu Y, Ke Y, Zhou J, Liu Y, Luo H, Wen S, Fan D 2017 Sci. Rep. 7 44096Google Scholar

    [27]

    Pampaloni F, Enderlein J 2004 arXiv: physics/0410021

    [28]

    Kamilov U S, Papadopoulos I N, Shoreh M H, Goy A, Vonesch C, Unser M, Psaltis D 2015 Optica 2 517Google Scholar

    [29]

    Brousseau D, Drapeau J, Piché M, Borra E F 2011 Appl. Opt. 50 4005Google Scholar

    [30]

    Wu Z, Kong X, Zhang Z, Wu J, Wang T, Liu M 2017 Micromachines 8 72Google Scholar

    [31]

    Yen Y T, Lu T Y, Lee Y C, Yu C C, Tsai Y C, Tseng Y C, Chen H L 2014 ACS Appl. Mater. Inter. 6 4292Google Scholar

  • [1] 梁殿明, 王超, 史浩东, 刘壮, 付强, 张肃, 战俊彤, 余益欣, 李英超, 姜会林. 基于Zernike模型系数优化的椭球型窗口光学系统像差校正. 物理学报, 2020, 69(24): 244203. doi: 10.7498/aps.69.20200933
    [2] 于涛, 夏辉, 樊志华, 谢文科, 张盼, 刘俊圣, 陈欣. 贝塞尔-高斯涡旋光束相干合成研究. 物理学报, 2018, 67(13): 134203. doi: 10.7498/aps.67.20180325
    [3] 张柱, 吴智政, 江新祥, 王园园, 朱进利, 李峰. 磁液变形镜的镜面动力学建模和实验验证. 物理学报, 2018, 67(3): 034702. doi: 10.7498/aps.67.20171281
    [4] 刘会龙, 胡总华, 夏菁, 吕彦飞. 无衍射光束的产生及其应用. 物理学报, 2018, 67(21): 214204. doi: 10.7498/aps.67.20181227
    [5] 陈欢, 凌晓辉, 何武光, 李钱光, 易煦农. 基于Pancharatnam-Berry相位调控产生贝塞尔光束. 物理学报, 2017, 66(4): 044203. doi: 10.7498/aps.66.044203
    [6] 乐阳阳, 张兴宇, 杨波, 陆蓉儿, 洪煦昊, 张超, 秦亦强, 朱永元. 一种含时贝塞尔光束的理论性质研究. 物理学报, 2016, 65(14): 144201. doi: 10.7498/aps.65.144201
    [7] 刘章文, 李正东, 周志强, 袁学文. 基于模糊控制的自适应光学校正技术. 物理学报, 2016, 65(1): 014206. doi: 10.7498/aps.65.014206
    [8] 刘莎, 李亚飞, 蔡先勇, 张楠. 像散飞秒贝塞尔光在石英玻璃中刻写双芯光波导的研究. 物理学报, 2016, 65(19): 194210. doi: 10.7498/aps.65.194210
    [9] 唐艳秋, 孙强, 赵建, 姚凯男. 一种基于全息术的光学系统闭环像差补偿方法. 物理学报, 2015, 64(2): 024206. doi: 10.7498/aps.64.024206
    [10] 于湘华, 姚保利, 雷铭, 严绍辉, 杨延龙, 李润泽, 蔡亚楠. 无衍射特殊光束的产生与三维表征. 物理学报, 2015, 64(24): 244203. doi: 10.7498/aps.64.244203
    [11] 刘绩林, 陈子阳, 张磊, 蒲继雄. 角向偏振无衍射光束的传输特性及其偏振态研究. 物理学报, 2015, 64(6): 064201. doi: 10.7498/aps.64.064201
    [12] 赵娟莹, 邓冬梅, 张泽, 刘京郊, 姜东升. 自加速类贝塞尔-厄米-高斯光束的理论和实验研究. 物理学报, 2014, 63(4): 044204. doi: 10.7498/aps.63.044204
    [13] 范丹丹, 吴逢铁, 程治明, 朱健强. 非相干光源无衍射光的自重建. 物理学报, 2013, 62(10): 104219. doi: 10.7498/aps.62.104219
    [14] 邓海东, 李海. 磁性液体中非磁性小球与磁性纳米颗粒的相互作用及磁组装. 物理学报, 2013, 62(12): 127501. doi: 10.7498/aps.62.127501
    [15] 杜团结, 王涛, 吴逢铁. 轴棱锥对无衍射光束的线聚焦特性. 物理学报, 2013, 62(13): 134103. doi: 10.7498/aps.62.134103
    [16] 于国君, 卜胜利, 王响, 纪红柱. 基于硅柱-磁性液体体系的光子晶体的可调谐负折射特性研究. 物理学报, 2012, 61(19): 194703. doi: 10.7498/aps.61.194703
    [17] 任志君, 吴琼, 周卫东, 吴根柱, 施逸乐. 空间诱导产生艾里-贝塞尔光弹研究. 物理学报, 2012, 61(17): 174207. doi: 10.7498/aps.61.174207
    [18] 范丹丹, 张前安, 程治明, 郑维涛, 吴逢铁. Bessel光束自重建的模拟仿真与实验验证. 物理学报, 2012, 61(16): 164103. doi: 10.7498/aps.61.164103
    [19] 卢文和, 吴逢铁, 马宝田. 环形障碍物-轴棱锥产生局域空心光束. 物理学报, 2010, 59(9): 6101-6105. doi: 10.7498/aps.59.6101
    [20] 吴逢铁, 江新光, 刘彬, 邱振兴. 轴棱锥产生无衍射光束自再现特性的几何光学分析. 物理学报, 2009, 58(5): 3125-3129. doi: 10.7498/aps.58.3125
计量
  • 文章访问数:  9825
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-11
  • 修回日期:  2019-02-26
  • 上网日期:  2019-06-01
  • 刊出日期:  2019-06-05

/

返回文章
返回