搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种含时贝塞尔光束的理论性质研究

乐阳阳 张兴宇 杨波 陆蓉儿 洪煦昊 张超 秦亦强 朱永元

引用本文:
Citation:

一种含时贝塞尔光束的理论性质研究

乐阳阳, 张兴宇, 杨波, 陆蓉儿, 洪煦昊, 张超, 秦亦强, 朱永元

Theoretical investigation on a kind of time-dependent Bessel beam

Yue Yang-Yang, Zhang Xing-Yu, Yang Bo, Lu Rong-Er, Hong Xu-Hao, Zhang Chao, Qin Yi-Qiang, Zhu Yong-Yuan
PDF
导出引用
  • 本文从理论角度提出了一种含时贝塞尔光束的概念. 在非傍轴和非时谐条件下, 直接从麦克斯韦方程出发, 借鉴半贝塞尔光束的处理方法, 同时引入第四维虚数坐标, 由此获得了完整的含时贝塞尔光束的解析表达式. 并从无衍射性质和时空特性两个方面对其进行了探讨和研究, 发现该光束具有如下性质: 符合贝塞尔光束类型的无衍射特征; 在时空双曲线上强度保持不变; 光波时空特性的临界条件类似于相对论中的光锥. 含时贝塞尔光束的概念为无衍射自加速光束的研究开拓了新的思路和方向.
    Non-diffracting beams have been a hot topic since the Airy wave packet was introduced to optics domain from quantum mechanics. Great efforts have been made to study this theme in recent years. The researches have ranged from paraxial regime to non-paraxial regime, and a series of new non-diffracting beams have been discovered. However, most of these beams are obtained under the time harmonic condition. To break this limitation, we propose a concept of time-dependent Bessel beam in this paper, which generalizes the non-diffracting beams to non-time-harmonic regime.We start from Maxwell's equations in vacuum under non-paraxial condition using the method borrowed from the half-Bessel beam. To obtain the non-time-harmonic solution, the fourth dimensional imaginary coordinate is introduced, which refers to the covariance in the theory of special relativity. By solving the wave equation without the time harmonic condition, we obtain the analytical expression for a time-dependent beam in the form of Bessel functions. Thus we call it time-dependent Bessel beam.The diffraction properties and space-time characteristics of the time-dependent Bessel beam are investigated theoretically. The transverse intensity and the intensity distribution of the beam are calculated and discussed in detail. The wave function of the time-dependent Bessel beam is in the same form as the normal Bessel beam so that it can exhibit non-diffraction in the four dimensional space-time. When propagating along a space-time hyperbolic trajectory, the intensity of the time-dependent Bessel beam remains constant and the width of the beam decreases with propagating distance and time increasing. Besides, we deduce the critical condition of the spatiotemporal characteristics of the beam, and the result agrees well with the concept of the light cone in the theory of special relativity.The method to deduce the time-dependent Bessel beam used in this paper is universal, and it will provide a valuable access to other solutions for the wave equations under different conditions. We extend the study of non-diffracting beams from time harmonic regime to non-time-harmonic regime. Furthermore, our work demonstrates the relation between the non-diffracting accelerating beams and the theory of special relativity. We believe this work will open up a new vista and give a new insight into the research of non-diffracting accelerating beams or other relevant research fields.
      通信作者: 张超, zhch@nju.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11274163,11274164,11374150,11504166)资助的课题.
      Corresponding author: Zhang Chao, zhch@nju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274163, 11274164, 11374150, 11504166).
    [1]

    Berry M V, Balazs N L 1979 Am. J. Phys. 47 264

    [2]

    Siviloglou G A, Broky J, Dogariu A, Christodoulides D N 2007 Phys. Rev. Lett. 99 213901

    [3]

    Siviloglou G A, Christodoulides D N 2007 Opt. Lett. 32 979

    [4]

    Broky J, Siviloglou G A, Dogariu A, Christodoulides D N 2008 Opt. Express 16 12880

    [5]

    Yue Y Y, Xiao H, Wang Z X, Wu M 2013 Acta Phys. Sin. 62 044205 (in Chinese) [乐阳阳, 肖寒, 王子潇, 吴敏 2013 物理学报 62 044205]

    [6]

    Li L, Li T, Wang S M, Zhang C, Zhu S N 2011 Phys. Rev. Lett. 107 126804

    [7]

    Baumgartl J, Mazilu M, Dholakia K 2008 Nat. Photon. 2 675

    [8]

    Zhang P, Prakash J, Zhang Z, Mills M S, Efremidis N K, Christodoulides D N, Chen Z 2011 Opt. Lett. 36 2883

    [9]

    Polynkin P, Kolesik M, Moloney J V, Siviloglou G A, Christodoulides D N 2009 Science 324 229

    [10]

    Li J X, Zang W P, Tian J G 2010 Opt. Express 18 7300

    [11]

    Wang G H, Wang X F, Dong K G 2012 Acta Phys. Sin. 61 165201 (in Chinese) [王广辉, 王晓方, 董克攻 2012 物理学报 61 165201]

    [12]

    Guo C S, Wang S Z, Rong Z Y, Sha B 2013 Acta Phys. Sin. 62 084201 (in Chinese) [国承山, 王淑贞, 荣振宇, 沙贝 2013 物理学报 62 084201]

    [13]

    Hong X H, Yang B, Zhang C, Qin Y Q, Zhu Y Y 2014 Phys. Rev. Lett. 113 163902

    [14]

    Lumer Y, Drori L, Hazan Y, Segev M 2015 Phys. Rev. Lett. 115 013901

    [15]

    Bloch N V, Lereah Y, Lilach Y, Gover A, Arie A 2013 Nature 494 331

    [16]

    Kaminer I, Bekenstein R, Nemirovsky J, Segev M 2012 Phys. Rev. Lett. 108 163901

    [17]

    Zhang P, Hu Y, Li T, Cannan D, Yin X B, Morandotti R, Chen Z G, Zhang X 2012 Phys. Rev. Lett. 109 193901

    [18]

    Durnin J, Miceli Jr J J, Eberly J H 1987 Phys. Rev. Lett. 58 1499

  • [1]

    Berry M V, Balazs N L 1979 Am. J. Phys. 47 264

    [2]

    Siviloglou G A, Broky J, Dogariu A, Christodoulides D N 2007 Phys. Rev. Lett. 99 213901

    [3]

    Siviloglou G A, Christodoulides D N 2007 Opt. Lett. 32 979

    [4]

    Broky J, Siviloglou G A, Dogariu A, Christodoulides D N 2008 Opt. Express 16 12880

    [5]

    Yue Y Y, Xiao H, Wang Z X, Wu M 2013 Acta Phys. Sin. 62 044205 (in Chinese) [乐阳阳, 肖寒, 王子潇, 吴敏 2013 物理学报 62 044205]

    [6]

    Li L, Li T, Wang S M, Zhang C, Zhu S N 2011 Phys. Rev. Lett. 107 126804

    [7]

    Baumgartl J, Mazilu M, Dholakia K 2008 Nat. Photon. 2 675

    [8]

    Zhang P, Prakash J, Zhang Z, Mills M S, Efremidis N K, Christodoulides D N, Chen Z 2011 Opt. Lett. 36 2883

    [9]

    Polynkin P, Kolesik M, Moloney J V, Siviloglou G A, Christodoulides D N 2009 Science 324 229

    [10]

    Li J X, Zang W P, Tian J G 2010 Opt. Express 18 7300

    [11]

    Wang G H, Wang X F, Dong K G 2012 Acta Phys. Sin. 61 165201 (in Chinese) [王广辉, 王晓方, 董克攻 2012 物理学报 61 165201]

    [12]

    Guo C S, Wang S Z, Rong Z Y, Sha B 2013 Acta Phys. Sin. 62 084201 (in Chinese) [国承山, 王淑贞, 荣振宇, 沙贝 2013 物理学报 62 084201]

    [13]

    Hong X H, Yang B, Zhang C, Qin Y Q, Zhu Y Y 2014 Phys. Rev. Lett. 113 163902

    [14]

    Lumer Y, Drori L, Hazan Y, Segev M 2015 Phys. Rev. Lett. 115 013901

    [15]

    Bloch N V, Lereah Y, Lilach Y, Gover A, Arie A 2013 Nature 494 331

    [16]

    Kaminer I, Bekenstein R, Nemirovsky J, Segev M 2012 Phys. Rev. Lett. 108 163901

    [17]

    Zhang P, Hu Y, Li T, Cannan D, Yin X B, Morandotti R, Chen Z G, Zhang X 2012 Phys. Rev. Lett. 109 193901

    [18]

    Durnin J, Miceli Jr J J, Eberly J H 1987 Phys. Rev. Lett. 58 1499

  • [1] 陈鑫淼, 李海英, 吴涛, 孟祥帅, 黎凤霞. 金属目标对贝塞尔涡旋波束的近场电磁散射特性. 物理学报, 2023, 72(10): 100302. doi: 10.7498/aps.72.20222192
    [2] 李顺, 李正军, 屈檀, 李海英, 吴振森. 双零阶贝塞尔波束的传播及对单轴各向异性球的散射特性. 物理学报, 2022, 71(18): 180301. doi: 10.7498/aps.71.20220491
    [3] 魏祥, 吴智政, 曹战, 王园园, DzikiMbemba. 基于磁液变形镜生成弯曲轨迹自加速类贝塞尔光束. 物理学报, 2019, 68(11): 114701. doi: 10.7498/aps.68.20190063
    [4] 于涛, 夏辉, 樊志华, 谢文科, 张盼, 刘俊圣, 陈欣. 贝塞尔-高斯涡旋光束相干合成研究. 物理学报, 2018, 67(13): 134203. doi: 10.7498/aps.67.20180325
    [5] 刘会龙, 胡总华, 夏菁, 吕彦飞. 无衍射光束的产生及其应用. 物理学报, 2018, 67(21): 214204. doi: 10.7498/aps.67.20181227
    [6] 陈欢, 凌晓辉, 何武光, 李钱光, 易煦农. 基于Pancharatnam-Berry相位调控产生贝塞尔光束. 物理学报, 2017, 66(4): 044203. doi: 10.7498/aps.66.044203
    [7] 赵浩宇, 邓洪昌, 苑立波. Airy光纤:基于阵列波导耦合的光场调控方法. 物理学报, 2017, 66(7): 074211. doi: 10.7498/aps.66.074211
    [8] 施建珍, 许田, 周巧巧, 纪宪明, 印建平. 用波晶片相位板产生角动量可调的无衍射涡旋空心光束. 物理学报, 2015, 64(23): 234209. doi: 10.7498/aps.64.234209
    [9] 于湘华, 姚保利, 雷铭, 严绍辉, 杨延龙, 李润泽, 蔡亚楠. 无衍射特殊光束的产生与三维表征. 物理学报, 2015, 64(24): 244203. doi: 10.7498/aps.64.244203
    [10] 刘绩林, 陈子阳, 张磊, 蒲继雄. 角向偏振无衍射光束的传输特性及其偏振态研究. 物理学报, 2015, 64(6): 064201. doi: 10.7498/aps.64.064201
    [11] 李冬, 吴逢铁, 谢晓霞, 孙川. 无衍射 Mathieu光束自重建特性的理论和实验研究. 物理学报, 2015, 64(1): 014201. doi: 10.7498/aps.64.014201
    [12] 李冬, 吴逢铁, 谢晓霞. 基于轴棱锥产生近似无衍射Mathieu光束的新方法. 物理学报, 2014, 63(15): 152401. doi: 10.7498/aps.63.152401
    [13] 赵娟莹, 邓冬梅, 张泽, 刘京郊, 姜东升. 自加速类贝塞尔-厄米-高斯光束的理论和实验研究. 物理学报, 2014, 63(4): 044204. doi: 10.7498/aps.63.044204
    [14] 杜团结, 王涛, 吴逢铁. 轴棱锥对无衍射光束的线聚焦特性. 物理学报, 2013, 62(13): 134103. doi: 10.7498/aps.62.134103
    [15] 乐阳阳, 肖寒, 王子潇, 吴敏. 关于Airy光束衍射及自加速性质的研究. 物理学报, 2013, 62(4): 044205. doi: 10.7498/aps.62.044205
    [16] 陈海军, 李高清, 薛具奎. 变分法研究一维Bose-Fermi系统的稳定性. 物理学报, 2011, 60(4): 040304. doi: 10.7498/aps.60.040304.1
    [17] 马宝田, 吴逢铁, 马亮. 非稳腔主动式直接获取纳秒近似无衍射贝塞尔绿光. 物理学报, 2010, 59(9): 6213-6218. doi: 10.7498/aps.59.6213
    [18] 吴逢铁, 江新光, 刘彬, 邱振兴. 轴棱锥产生无衍射光束自再现特性的几何光学分析. 物理学报, 2009, 58(5): 3125-3129. doi: 10.7498/aps.58.3125
    [19] 储刚. 含非晶相样品的X射线衍射无标定量相分析方法. 物理学报, 1995, 44(10): 1679-1683. doi: 10.7498/aps.44.1679
    [20] 秦元勋. 变速条件下的局部瞬时空时对称理论. 物理学报, 1976, 25(4): 355-361. doi: 10.7498/aps.25.355
计量
  • 文章访问数:  6100
  • PDF下载量:  288
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-29
  • 修回日期:  2016-05-17
  • 刊出日期:  2016-07-05

/

返回文章
返回