搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Airy光纤:基于阵列波导耦合的光场调控方法

赵浩宇 邓洪昌 苑立波

引用本文:
Citation:

Airy光纤:基于阵列波导耦合的光场调控方法

赵浩宇, 邓洪昌, 苑立波

Airy fiber: waveguides array coupling based light beam control method

Zhao Hao-Yu, Deng Hong-Chang, Yuan Li-Bo
PDF
导出引用
  • 近年来,Airy光束作为一种无衍射光束,其特性引起了研究者的广泛关注,人们对它的理论研究、实验验证、实际应用多个方面都取得了长足的进步.而Airy光纤作为一种可生成Airy光束的波导器件,结合其光纤自身优点可适用于多种应用领域,因此开展新型Airy光纤的探索研究、拓展Airy光束的应用范围具有重要现实意义.本文从Airy光束的原理、光纤结构设计、光纤内部光束生成机理、生成光束波长响应特性以及Airy光纤研究现状和应用五个方面展开了较系统的讨论.
    Recently, Airy beam as a kind of non-diffracting beam, has attracted a great deal of attention due to its unique properties to have propagation-invariant intensity profile, remain transverse accelerating and exhibit self-healing features. Therefore, Airy beams have found many potential applications, such as optical micro-manipulation, imaging technology, surface plasmon polaritons and laser micromachining. Airy optical fiber as a kind of waveguide device can be applied for the Airy beam generation, carry out the exploration of new Airy fiber and expand the Airy beam application range, has important practical significance. In this paper, we give an systematical introduction from the view of the Airy beam working principle, Airy fiber structure design, Airy fiber beam generated internal mechanism, Airy beam wavelength response characteristics, and Airy fiber applications.
      通信作者: 苑立波, lbyuan@vip.sina.com
    • 基金项目: 国家自然科学基金(批准号:61290314,61535004,11274077,61675052)、中国博士后基金(批准号:2015M581428)和黑龙江省博士后基金(批准号:LBH-Z15039,LBH-TZ1605)资助的课题.
      Corresponding author: Yuan Li-Bo, lbyuan@vip.sina.com
    • Funds: Project supported by the National Natural Science Foundations of China (Grant Nos. 61290314, 61535004, 11274077, 61675052), the China Postdoctoral Science Foundation (Grant No. 2015M581428), and the Heilongjiang Postdoctoral Fund, China (Grant Nos. LBH-Z15039, LBH-TZ1605).
    [1]

    Durnin J 1987 J. Opt. Soc. Am. A 4 651

    [2]

    Durnin J, Miceli Jr J J, Eberly J H 1987 Phys. Rev. Lett. 58 1499

    [3]

    Turunen J, Friberg A T 2010 Prog. Opt. 54 1

    [4]

    Berry M V, Balazs N L 1979 Am. J. Phys. 47 264

    [5]

    Unnikrishnan K, Rau A R P 1996 Am. J. Phys. 64 1034

    [6]

    Siviloglou G A, Christodoulides D N 2007 Opt. Lett. 32 979

    [7]

    Siviloglou G A, Broky J, Dogariu A, et al. 2007 Phys. Rev. Lett. 99 213901

    [8]

    Baumgartl J, Mazilu M, Dholakia K 2008 Nat. Photon. 2 675

    [9]

    Zhang P, Prakash J, Zhang Z, et al. 2011 Opt. Lett. 36 2883

    [10]

    Zheng Z, Zhang B F, Chen H, et al. 2011 Appl. Opt. 50 43

    [11]

    Zhao J, Chremmos I D, Song D, et al. 2015 Sci. Rep.-UK 5

    [12]

    Vettenburg T, Dalgarno H I C, Nylk J, et al. 2014 Nat. Methods 11 541

    [13]

    Mathis A, Courvoisier F, Froehly L, et al. 2012 Appl. Phys. Lett. 101 071110

    [14]

    Mathis A, Froehly L, Furfaro L, et al. 2013 J. Eur.Opt. Soc.-Rapid 8 13019

    [15]

    Papazoglou D G, Panagiotopoulos P, Couairon A, it et al. 2013 Lasers and Electro-Optics San Jose, United States, June 9-14, 2013 p1

    [16]

    Polynkin P, Kolesik M, Moloney J V, et al. 2009 Science 324 229

    [17]

    Minovich A, Klein A E, Janunts N, et al. 2011 Phys. Rev. Lett. 107 116802

    [18]

    Salandrino A, Christodoulides D N 2010 Opt. Lett. 35 2082

    [19]

    Zhang P, Wang S, Liu Y, et al. 2011 Opt. Lett. 36 3191

    [20]

    Hu Y, Zhang P, Lou C, et al. 2010 Opt. Lett. 35 2260

    [21]

    Ellenbogen T, Voloch-Bloch N, Ganany-Padowicz A, et al. 2009 Nat. Photon. 3 395

    [22]

    Guan C, Ding M, Shi J, et al. 2014 Opt. Lett. 39 1113

    [23]

    Deng H, Yuan L 2013 Opt. Lett. 38 1645

    [24]

    Deng H, Yuan L 2013 J. Opt. Soc. Am. A 30 1404

    [25]

    Efremidis N K, Christodoulides D N 2010 Opt. Lett. 35 4045

    [26]

    Chremmos I, Efremidis N K, Christodoulides D N 2011 Opt. Lett. 36 1890

    [27]

    Vaveliuk P, Lencina A, Rodrigo J A, et al. 2014 Opt. Lett. 39 2370

    [28]

    Vaveliuk P, Lencina A, Rodrigo J A, et al. 2015 J. Opt. Soc. Am. A 32 443

    [29]

    Landau L D, Lifshitz E M 1958 Quantum Mechanics:Non-Relativistic Theory (Vol. 3) (Amsterdam:Elsevier)

    [30]

    Snyder A W 1972 J. Opt. Soc. Am. A 62 1267

    [31]

    Deng H, Yuan Y, Yuan L 2016 Opt. Lett. 41 824

    [32]

    Siviloglou G A, Broky J, Dogariu A, et al. 2008 Opt. Lett. 33 207

    [33]

    Gris-Snchez I, van Ras D, Birks T A 2016 Optica 3 270

    [34]

    Christodoulides D N 2008 Nat. Photon. 2 652

    [35]

    Baumgartl J,Čižmr T, Mazilu M, et al. 2010 Opt. Express 18 17130

    [36]

    Baumgartl J, Hannappel G M, Stevenson D J, et al. 2009 Lab on Chip 9 1334

  • [1]

    Durnin J 1987 J. Opt. Soc. Am. A 4 651

    [2]

    Durnin J, Miceli Jr J J, Eberly J H 1987 Phys. Rev. Lett. 58 1499

    [3]

    Turunen J, Friberg A T 2010 Prog. Opt. 54 1

    [4]

    Berry M V, Balazs N L 1979 Am. J. Phys. 47 264

    [5]

    Unnikrishnan K, Rau A R P 1996 Am. J. Phys. 64 1034

    [6]

    Siviloglou G A, Christodoulides D N 2007 Opt. Lett. 32 979

    [7]

    Siviloglou G A, Broky J, Dogariu A, et al. 2007 Phys. Rev. Lett. 99 213901

    [8]

    Baumgartl J, Mazilu M, Dholakia K 2008 Nat. Photon. 2 675

    [9]

    Zhang P, Prakash J, Zhang Z, et al. 2011 Opt. Lett. 36 2883

    [10]

    Zheng Z, Zhang B F, Chen H, et al. 2011 Appl. Opt. 50 43

    [11]

    Zhao J, Chremmos I D, Song D, et al. 2015 Sci. Rep.-UK 5

    [12]

    Vettenburg T, Dalgarno H I C, Nylk J, et al. 2014 Nat. Methods 11 541

    [13]

    Mathis A, Courvoisier F, Froehly L, et al. 2012 Appl. Phys. Lett. 101 071110

    [14]

    Mathis A, Froehly L, Furfaro L, et al. 2013 J. Eur.Opt. Soc.-Rapid 8 13019

    [15]

    Papazoglou D G, Panagiotopoulos P, Couairon A, it et al. 2013 Lasers and Electro-Optics San Jose, United States, June 9-14, 2013 p1

    [16]

    Polynkin P, Kolesik M, Moloney J V, et al. 2009 Science 324 229

    [17]

    Minovich A, Klein A E, Janunts N, et al. 2011 Phys. Rev. Lett. 107 116802

    [18]

    Salandrino A, Christodoulides D N 2010 Opt. Lett. 35 2082

    [19]

    Zhang P, Wang S, Liu Y, et al. 2011 Opt. Lett. 36 3191

    [20]

    Hu Y, Zhang P, Lou C, et al. 2010 Opt. Lett. 35 2260

    [21]

    Ellenbogen T, Voloch-Bloch N, Ganany-Padowicz A, et al. 2009 Nat. Photon. 3 395

    [22]

    Guan C, Ding M, Shi J, et al. 2014 Opt. Lett. 39 1113

    [23]

    Deng H, Yuan L 2013 Opt. Lett. 38 1645

    [24]

    Deng H, Yuan L 2013 J. Opt. Soc. Am. A 30 1404

    [25]

    Efremidis N K, Christodoulides D N 2010 Opt. Lett. 35 4045

    [26]

    Chremmos I, Efremidis N K, Christodoulides D N 2011 Opt. Lett. 36 1890

    [27]

    Vaveliuk P, Lencina A, Rodrigo J A, et al. 2014 Opt. Lett. 39 2370

    [28]

    Vaveliuk P, Lencina A, Rodrigo J A, et al. 2015 J. Opt. Soc. Am. A 32 443

    [29]

    Landau L D, Lifshitz E M 1958 Quantum Mechanics:Non-Relativistic Theory (Vol. 3) (Amsterdam:Elsevier)

    [30]

    Snyder A W 1972 J. Opt. Soc. Am. A 62 1267

    [31]

    Deng H, Yuan Y, Yuan L 2016 Opt. Lett. 41 824

    [32]

    Siviloglou G A, Broky J, Dogariu A, et al. 2008 Opt. Lett. 33 207

    [33]

    Gris-Snchez I, van Ras D, Birks T A 2016 Optica 3 270

    [34]

    Christodoulides D N 2008 Nat. Photon. 2 652

    [35]

    Baumgartl J,Čižmr T, Mazilu M, et al. 2010 Opt. Express 18 17130

    [36]

    Baumgartl J, Hannappel G M, Stevenson D J, et al. 2009 Lab on Chip 9 1334

  • [1] 丁子平, 廖健飞, 曾泽楷. 基于表面等离子体共振的新型超宽带微结构光纤传感器研究. 物理学报, 2021, 70(7): 074207. doi: 10.7498/aps.70.20201477
    [2] 朱开成, 梁瑞生, 易亚军, 刘伟慈, 朱洁. 附加球面相位引致Airy光束在单轴晶体传输时的两次镜像演化. 物理学报, 2020, 69(9): 094102. doi: 10.7498/aps.69.20191592
    [3] 戴震飞, 姜文帆, 王玲, 陈明阳, 高永锋, 任乃飞. 基于高折射率液体填充的花瓣形微结构光纤可调滤模特性. 物理学报, 2019, 68(8): 084206. doi: 10.7498/aps.68.20181890
    [4] 李建设, 李曙光, 赵原源, 刘强, 范振凯, 王光耀. 在单零色散微结构光纤中一次抽运同时发生两组四波混频的实验观察. 物理学报, 2016, 65(21): 214201. doi: 10.7498/aps.65.214201
    [5] 乐阳阳, 张兴宇, 杨波, 陆蓉儿, 洪煦昊, 张超, 秦亦强, 朱永元. 一种含时贝塞尔光束的理论性质研究. 物理学报, 2016, 65(14): 144201. doi: 10.7498/aps.65.144201
    [6] 徐闵喃, 周桂耀, 陈成, 侯峙云, 夏长明, 周概, 刘宏展, 刘建涛, 张卫. 具有四模式的低串扰及大群时延多芯微结构光纤的设计. 物理学报, 2015, 64(23): 234206. doi: 10.7498/aps.64.234206
    [7] 陈其杰, 周桂耀, 石富坤, 李端明, 苑金辉, 夏长明, 葛姝. 微结构光纤近红外色散波产生的研究. 物理学报, 2015, 64(3): 034215. doi: 10.7498/aps.64.034215
    [8] 陈艳, 周桂耀, 夏长明, 侯峙云, 刘宏展, 王超. 具有双模特性的大模场面积微结构光纤的设计. 物理学报, 2014, 63(1): 014701. doi: 10.7498/aps.63.014701
    [9] 赵娟莹, 邓冬梅, 张泽, 刘京郊, 姜东升. 自加速类贝塞尔-厄米-高斯光束的理论和实验研究. 物理学报, 2014, 63(4): 044204. doi: 10.7498/aps.63.044204
    [10] 魏巍, 张霞, 于辉, 李宇鹏, 张阳安, 黄永清, 陈伟, 罗文勇, 任晓敏. 高非线性微结构光纤中基于受激布里渊散射的慢光延迟. 物理学报, 2013, 62(18): 184208. doi: 10.7498/aps.62.184208
    [11] 苗银萍, 姚建铨. 基于磁流体填充微结构光纤的温度特性研究. 物理学报, 2013, 62(4): 044223. doi: 10.7498/aps.62.044223
    [12] 乐阳阳, 肖寒, 王子潇, 吴敏. 关于Airy光束衍射及自加速性质的研究. 物理学报, 2013, 62(4): 044205. doi: 10.7498/aps.62.044205
    [13] 周亚训, 於杏燕, 徐星辰, 戴世勋. 掺铒硫系玻璃的制备及其微结构光纤的中红外信号放大特性研究. 物理学报, 2012, 61(15): 157701. doi: 10.7498/aps.61.157701
    [14] 季玲玲, 陆培祥, 陈 伟, 戴能利, 张继皇, 蒋作文, 李进延, 李 伟. 微结构光纤次芯中的四波混频过程. 物理学报, 2008, 57(9): 5973-5977. doi: 10.7498/aps.57.5973
    [15] 周桂耀, 侯峙云, 李曙光, 韩 颖, 侯蓝田. 微结构光纤制备过程中不同位置空气孔的形变量分析. 物理学报, 2007, 56(11): 6486-6489. doi: 10.7498/aps.56.6486
    [16] 王 健, 雷乃光, 余重秀. 椭圆空气孔微结构光纤限制损耗的分析. 物理学报, 2007, 56(2): 946-951. doi: 10.7498/aps.56.946
    [17] 周桂耀, 侯峙云, 潘普丰, 侯蓝田, 李曙光, 韩 颖. 微结构光纤预制棒拉制过程的温度场分布. 物理学报, 2006, 55(3): 1271-1275. doi: 10.7498/aps.55.1271
    [18] 张春书, 开桂云, 王 志, 王 超, 孙婷婷, 张伟刚, 刘艳格, 刘剑飞, 袁树忠, 董孝义. 柚子型微结构光纤Bragg光栅温度和应变传感特性研究. 物理学报, 2005, 54(6): 2758-2763. doi: 10.7498/aps.54.2758
    [19] 李曙光, 周桂耀, 邢光龙, 侯蓝田, 王清月, 栗岩锋, 胡明列. 微结构光纤中超短激光脉冲传输的数值模拟. 物理学报, 2005, 54(4): 1599-1606. doi: 10.7498/aps.54.1599
    [20] 胡明列, 王清月, 栗岩峰, 倪晓昌, 张志刚, 王 专, 柴 路, 侯蓝田, 李曙光, 周桂耀. 非均匀微结构光纤中双折射现象的研究. 物理学报, 2004, 53(12): 4248-4252. doi: 10.7498/aps.53.4248
计量
  • 文章访问数:  3313
  • PDF下载量:  313
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-11
  • 修回日期:  2017-03-24
  • 刊出日期:  2017-04-05

Airy光纤:基于阵列波导耦合的光场调控方法

  • 1. 桂林电子科技大学电子工程与自动化学院, 桂林 541004;
  • 2. 哈尔滨工程大学理学院, 哈尔滨 150001
  • 通信作者: 苑立波, lbyuan@vip.sina.com
    基金项目: 国家自然科学基金(批准号:61290314,61535004,11274077,61675052)、中国博士后基金(批准号:2015M581428)和黑龙江省博士后基金(批准号:LBH-Z15039,LBH-TZ1605)资助的课题.

摘要: 近年来,Airy光束作为一种无衍射光束,其特性引起了研究者的广泛关注,人们对它的理论研究、实验验证、实际应用多个方面都取得了长足的进步.而Airy光纤作为一种可生成Airy光束的波导器件,结合其光纤自身优点可适用于多种应用领域,因此开展新型Airy光纤的探索研究、拓展Airy光束的应用范围具有重要现实意义.本文从Airy光束的原理、光纤结构设计、光纤内部光束生成机理、生成光束波长响应特性以及Airy光纤研究现状和应用五个方面展开了较系统的讨论.

English Abstract

参考文献 (36)

目录

    /

    返回文章
    返回