搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

附加球面相位引致Airy光束在单轴晶体传输时的两次镜像演化

朱开成 梁瑞生 易亚军 刘伟慈 朱洁

引用本文:
Citation:

附加球面相位引致Airy光束在单轴晶体传输时的两次镜像演化

朱开成, 梁瑞生, 易亚军, 刘伟慈, 朱洁

Dual mirror evolutions of Airy beams propagating through uniaxial crystals induced by added spherical phase

Zhu Kai-Cheng, Liang Rui-Sheng, Yi Ya-Jun, Liu Wei-Ci, Zhu Jie
PDF
HTML
导出引用
  • 利用单轴晶体光束传输理论, 求得了具有附加球面相位Airy光束在单轴晶体中的传输公式. 数值模拟计算结果表明, 线偏振附加球面相位Airy光束在晶体中传输时仍为线偏振, 但不是传输不变的. 粗略地讲, 具有附加球面相位的Airy光束在晶体中传输时, 近场是传输不变的; 而在由晶体寻常与非寻常折射率和球面半径共同确定的两个特定传输距离处, 传输光束转换成了取向不同的Gaussian-Airy光束, 且高斯依赖的束宽度敏感地与截断因子相关; 而当光束依次穿过此两位置时光斑花样先后相对于两横向轴平面做镜像演化, 且镜像演化顺序也与晶体寻常和非寻常折射率相对大小密切相关, 其总的效果是远场强度花样能恢复原样但花样取向产生了关于对过横平面二、四象限平分平面的镜像演化. 这些结果表明, 通过恰当选择晶体材料(即折射率)和附加球面相位的半径R, 可以调控光束花样的形状、取向及表征各向异性材料的相关性质.
    Airy beams have received considerable attention due to their unique features on propagation, including non-spreading, self-healing, self-accelerating, and parabolic trajectories. Here in this work we study the propagation of linearly polarized Airy beams with an added spherical phase in uniaxial crystal orthogonal to the optical axis. Based on the beam transmission theory in uniaxial crystals, the analytical expressions for the intensity distribution of the beams in different view planes are derived. Numerical calculations are performed and some novel propagation features are presented graphically. It is shown that the Airy beam with an added spherical phase remains linearly polarized but cannot keep other properties unchanged during propagation in uniaxial crystal. Such a beam maintains its intensity profile in the near-field, then with the propagation distance increasing, converts into the Gaussian-Airy beams with different orientations at two specified distances which are codetermined by the extraordinary and ordinary refractive index of the crystal (namely ne and no) and the radius of the spherical phase, and most impressively, forms a mirror-like reflection profile in the far field, i.e., the intensity pattern in the far field returns to the initial Airy beam profile while its orientation on the transversal plane is reversed along the bisector line of the second and fourth quadrant. Note that the intensity pattern successively experiences two mirror transformations along the x and y coordinate axis when passing through these two critical positions, which can give rise to the mirror reflection effect for the whole Airy beam. Moreover, we further demonstrate that the sequences of these two mirror transformations are in close relation with the relative size between ne and no. Therefore, the results obtained in this paper reveal new propagation features in anisotropic medium of Airy beams with added spherical phase and provide a novel route to controlling propagation properties like the pattern profile and orientation of the Airy beams through choosing appropriate anisotropic materials and the radius of the spherical phase factor. Considering that it is easy to obtain an Airy beam with an added spherical phase which can be realized with an Airy beam through an ideal lens, our investigation may lead to potential applications in many fields where the ability to change profile and orientation of the intensity pattern and the ability to determine the refractive index of anisotropic medium are both required.
      通信作者: 朱洁, jiezh_16@163.com
      Corresponding author: Zhu Jie, jiezh_16@163.com
    [1]

    Berry M V, Balazs N L 1979 Am. J. Phys. 47 264Google Scholar

    [2]

    Siviloglou G A, Broky J, Dogariu A, Christodoulides D N 2007 Phys. Rev. Lett. 99 213901Google Scholar

    [3]

    Siviloglou G A, Broky J, Dogariu A, Christodoulides D N 2008 Opt. Lett. 33 207Google Scholar

    [4]

    Siviloglou G A, Christodoulides D N 2007 Opt. Lett. 32 979Google Scholar

    [5]

    Broky J, Siviloglou G A, Dogariu A, Christodoulides D N 2008 Opt. Express 16 12880Google Scholar

    [6]

    Christodoulides D N 2008 Nat. Photonics 2 652Google Scholar

    [7]

    Chong A, Renninger W H, Christodoulides D N, Wise F W 2010 Nat. Photonics 4 103Google Scholar

    [8]

    Zhang Y Q, Zhong H, Belic M R, Zhang Y P 2017 Appl. Sci. 7 341Google Scholar

    [9]

    Efremidis N, Chen Z G, Segev M, Christodoulides D N 2019 Optica 6 686Google Scholar

    [10]

    Polynkin P, Kolesik M, Moloney J V, Siviloglou G A, Christodoulides D N 2009 Science 324 229Google Scholar

    [11]

    Rose P, Diebel F, Boguslawski M, Denz C 2013 Appl. Phys. Lett. 102 101101Google Scholar

    [12]

    Wiersma N, Marsal N, Sciamanna M, Wolfersberger D 2014 Opt. Lett. 39 5997Google Scholar

    [13]

    Liang Y, Hu Y, Song D, Lou C, Zhang X, Chen Z, Xu J 2015 Opt. Lett. 40 5686Google Scholar

    [14]

    Deng D M, Guo Q 2009 New J. Phys. 11 103029Google Scholar

    [15]

    Deng D M, Du S L, Guo Q 2013 Opt. Commun. 289 6Google Scholar

    [16]

    Chu X X 2011 Opt. Lett. 36 2701Google Scholar

    [17]

    Wen W, Chu X X 2014 J. Mod. Opt. 61 379Google Scholar

    [18]

    Wen W, Chu X X, Ma H T 2015 Opt. Commun. 336 326Google Scholar

    [19]

    Zhou G Q, Chen R P, Ru G Y 2014 Laser Phys. Lett. 11 105001Google Scholar

    [20]

    Ruiz-Jimenez C, Nobrega K Z, Porras M A 2015 Opt. Express 23 8918Google Scholar

    [21]

    Zhuang F, Du X Y, Ye Y Q, Zhao D M 2012 Opt. Lett. 37 1871Google Scholar

    [22]

    Shen M, Li W, Lee R K 2016 Opt. Express 24 8501Google Scholar

    [23]

    Chen R P, Chew K H, Zhao T Y, Li P G, Li C R 2014 Laser Phys. 24 115402

    [24]

    Xiao F, Li B, Wang M, Zhu W, Zhang P, Liu S, Premaratne M, Zhao J 2014 Opt. Express 22 22763Google Scholar

    [25]

    Zhou G Q, Chen R P, Chu X X 2012 Appl. Phys. B 109 549Google Scholar

    [26]

    Zhang Y Q, Belic M R, Zhang L, Zhong W P, Zhu D, Wang R, Zhang R P 2015 Opt. Express 23 10467Google Scholar

    [27]

    Besieris I M, Shaarawi A M, Ramboni-Rached M 2016 Opt. Commun. 369 56Google Scholar

    [28]

    Li H H, Wang J G, Tang M M, Cao J X, Li X Z 2017 Optik 149 144Google Scholar

    [29]

    Xie W K, Zhang P, Wang H, Chu X X 2018 Opt. Commun. 427 288Google Scholar

    [30]

    Zhou G Q, Chen R P, Chu X X 2012 Opt. Express 20 2196Google Scholar

    [31]

    Deng D M, Chen C D, Zhao X, Li H G 2013 Appl. Phys. B 110 433

    [32]

    Zhou M L, Chen C D, Chen B, Peng X, Peng Y L, Deng D M 2015 Chin. Phys. B 24 124102Google Scholar

    [33]

    Deng F, Deng D M 2016 Opt. Commun. 380 280Google Scholar

    [34]

    Yu W, Zhao R, Deng F, Huang J, Chen C, Yang X, Zhao Y, Deng D M 2016 Chin. Phys. B 25 044201Google Scholar

    [35]

    Li D D, Peng X, Peng Y L, Zhang L P, Deng D M 2017 J. Opt. Soc. Am. B 34 891Google Scholar

    [36]

    Zheng G L, Deng X Q, Xu S X, Wu Q Y 2017 Appl. Opt. 56 2444Google Scholar

    [37]

    Zheng G L, Xu S X, Wu Q Y, Wang Q, Ouyang Z B 2017 Opt. Express 25 14654Google Scholar

    [38]

    Zhang J B, Zhou K Z, Liang J H, Lai Z Y, Yang X L, Deng D M 2018 Opt. Express 26 1290Google Scholar

    [39]

    Chen Y Z, Zhao G W, Ye F, Xu C J, Deng D M 2018 Chin. Phys. B 27 104201Google Scholar

    [40]

    Wu X L, Xie J T, Deng D M 2019 Appl. Phys. B 125 87

    [41]

    Tang H Q, Zhu K C 2013 Opt. Laser Technol. 54 68Google Scholar

    [42]

    朱开成, 唐慧琴, 郑小娟, 唐英 2014 物理学报 63 104210Google Scholar

    Zhu K C, Tang H Q, Zheng X J, Tang Y 2014 Acta Phys. Sin. 63 104210Google Scholar

    [43]

    朱洁, 朱开成 2016 物理学报 65 204204Google Scholar

    Zhu J, Zhu K C 2016 Acta Phys. Sin. 65 204204Google Scholar

    [44]

    Xiao Z Y, Xia H, Yu T, et al. 2018 Opt. Rev. 25 323Google Scholar

    [45]

    Valloee O, Soares M 2004 Airy Functions and Applications to Physics (London: Imperial College Press) p10, 87

    [46]

    Grossman J G, Casperson L W, Stafsudd O M, Sutter Jr L V 1984 Appl. Opt. 23 48Google Scholar

    [47]

    Zhang J, Pang Z, Feng L, Zhong T, Wang L, Deng D M 2017 Chin. Opt. Lett. 15 060501Google Scholar

    [48]

    Feng L, Zhang J, Pang Z, Wang L, Zhong T, Yang X, Deng D M 2017 Opt. Commun. 402 60Google Scholar

    [49]

    Zhang L P, Deng F, Peng Y L 2017 Laser Phys. 27 015404Google Scholar

    [50]

    Xie J T, Zhang J B, Ye J R, Liu H W, Liang Z Y, Long S J, Zhou K Z, Deng D M 2018 Opt. Express 26 5845Google Scholar

    [51]

    Zhang J G, Tian Z W, Li Y F 2018 Optik 158 64Google Scholar

    [52]

    Bai X Q, Wang Y H, Zhang J, Xiao Y 2019 Appl. Phys. B 125 188

    [53]

    Zhu J, Tang H Q, Su Q, Zhu K C 2017 Europhys. Lett. 118 14001Google Scholar

    [54]

    朱洁, 唐慧琴, 李晓利, 刘小钦 2017 物理学报 66 164202Google Scholar

    Zhu J, Tang H Q, Li X L, Liu X Q 2017 Acta Phys. Sin. 66 164202Google Scholar

  • 图 1  金红石晶体中不同传输距离处的光场强度分布, 其他参数分别为Nw = 100, a = b = 0.1, δ = 1

    Fig. 1.  Intensity distributions of the Airy beams in rutile crystal at several propagation distances with Nw = 100, a = b = 0.1, δ = 1

    图 2  金红石晶体时不同传输距离处的光束强度分布, 其他参数分别为Nw = 1, a = b = 0.1, δ = 1

    Fig. 2.  Intensity distributions of the Airy beams in rutile crystal at several propagation distances with Nw = 1, a = b = 0.1, δ = 1.

    图 3  淡红银矿晶体时不同传输距离处的光束强度分布, 其他参数分别为Nw = 100, a = b = 0.1, δ = 1

    Fig. 3.  Intensity distributions of the Airy beams in proustite crystal at several propagation distances with Nw = 100, a = b = 0.1, δ = 1.

  • [1]

    Berry M V, Balazs N L 1979 Am. J. Phys. 47 264Google Scholar

    [2]

    Siviloglou G A, Broky J, Dogariu A, Christodoulides D N 2007 Phys. Rev. Lett. 99 213901Google Scholar

    [3]

    Siviloglou G A, Broky J, Dogariu A, Christodoulides D N 2008 Opt. Lett. 33 207Google Scholar

    [4]

    Siviloglou G A, Christodoulides D N 2007 Opt. Lett. 32 979Google Scholar

    [5]

    Broky J, Siviloglou G A, Dogariu A, Christodoulides D N 2008 Opt. Express 16 12880Google Scholar

    [6]

    Christodoulides D N 2008 Nat. Photonics 2 652Google Scholar

    [7]

    Chong A, Renninger W H, Christodoulides D N, Wise F W 2010 Nat. Photonics 4 103Google Scholar

    [8]

    Zhang Y Q, Zhong H, Belic M R, Zhang Y P 2017 Appl. Sci. 7 341Google Scholar

    [9]

    Efremidis N, Chen Z G, Segev M, Christodoulides D N 2019 Optica 6 686Google Scholar

    [10]

    Polynkin P, Kolesik M, Moloney J V, Siviloglou G A, Christodoulides D N 2009 Science 324 229Google Scholar

    [11]

    Rose P, Diebel F, Boguslawski M, Denz C 2013 Appl. Phys. Lett. 102 101101Google Scholar

    [12]

    Wiersma N, Marsal N, Sciamanna M, Wolfersberger D 2014 Opt. Lett. 39 5997Google Scholar

    [13]

    Liang Y, Hu Y, Song D, Lou C, Zhang X, Chen Z, Xu J 2015 Opt. Lett. 40 5686Google Scholar

    [14]

    Deng D M, Guo Q 2009 New J. Phys. 11 103029Google Scholar

    [15]

    Deng D M, Du S L, Guo Q 2013 Opt. Commun. 289 6Google Scholar

    [16]

    Chu X X 2011 Opt. Lett. 36 2701Google Scholar

    [17]

    Wen W, Chu X X 2014 J. Mod. Opt. 61 379Google Scholar

    [18]

    Wen W, Chu X X, Ma H T 2015 Opt. Commun. 336 326Google Scholar

    [19]

    Zhou G Q, Chen R P, Ru G Y 2014 Laser Phys. Lett. 11 105001Google Scholar

    [20]

    Ruiz-Jimenez C, Nobrega K Z, Porras M A 2015 Opt. Express 23 8918Google Scholar

    [21]

    Zhuang F, Du X Y, Ye Y Q, Zhao D M 2012 Opt. Lett. 37 1871Google Scholar

    [22]

    Shen M, Li W, Lee R K 2016 Opt. Express 24 8501Google Scholar

    [23]

    Chen R P, Chew K H, Zhao T Y, Li P G, Li C R 2014 Laser Phys. 24 115402

    [24]

    Xiao F, Li B, Wang M, Zhu W, Zhang P, Liu S, Premaratne M, Zhao J 2014 Opt. Express 22 22763Google Scholar

    [25]

    Zhou G Q, Chen R P, Chu X X 2012 Appl. Phys. B 109 549Google Scholar

    [26]

    Zhang Y Q, Belic M R, Zhang L, Zhong W P, Zhu D, Wang R, Zhang R P 2015 Opt. Express 23 10467Google Scholar

    [27]

    Besieris I M, Shaarawi A M, Ramboni-Rached M 2016 Opt. Commun. 369 56Google Scholar

    [28]

    Li H H, Wang J G, Tang M M, Cao J X, Li X Z 2017 Optik 149 144Google Scholar

    [29]

    Xie W K, Zhang P, Wang H, Chu X X 2018 Opt. Commun. 427 288Google Scholar

    [30]

    Zhou G Q, Chen R P, Chu X X 2012 Opt. Express 20 2196Google Scholar

    [31]

    Deng D M, Chen C D, Zhao X, Li H G 2013 Appl. Phys. B 110 433

    [32]

    Zhou M L, Chen C D, Chen B, Peng X, Peng Y L, Deng D M 2015 Chin. Phys. B 24 124102Google Scholar

    [33]

    Deng F, Deng D M 2016 Opt. Commun. 380 280Google Scholar

    [34]

    Yu W, Zhao R, Deng F, Huang J, Chen C, Yang X, Zhao Y, Deng D M 2016 Chin. Phys. B 25 044201Google Scholar

    [35]

    Li D D, Peng X, Peng Y L, Zhang L P, Deng D M 2017 J. Opt. Soc. Am. B 34 891Google Scholar

    [36]

    Zheng G L, Deng X Q, Xu S X, Wu Q Y 2017 Appl. Opt. 56 2444Google Scholar

    [37]

    Zheng G L, Xu S X, Wu Q Y, Wang Q, Ouyang Z B 2017 Opt. Express 25 14654Google Scholar

    [38]

    Zhang J B, Zhou K Z, Liang J H, Lai Z Y, Yang X L, Deng D M 2018 Opt. Express 26 1290Google Scholar

    [39]

    Chen Y Z, Zhao G W, Ye F, Xu C J, Deng D M 2018 Chin. Phys. B 27 104201Google Scholar

    [40]

    Wu X L, Xie J T, Deng D M 2019 Appl. Phys. B 125 87

    [41]

    Tang H Q, Zhu K C 2013 Opt. Laser Technol. 54 68Google Scholar

    [42]

    朱开成, 唐慧琴, 郑小娟, 唐英 2014 物理学报 63 104210Google Scholar

    Zhu K C, Tang H Q, Zheng X J, Tang Y 2014 Acta Phys. Sin. 63 104210Google Scholar

    [43]

    朱洁, 朱开成 2016 物理学报 65 204204Google Scholar

    Zhu J, Zhu K C 2016 Acta Phys. Sin. 65 204204Google Scholar

    [44]

    Xiao Z Y, Xia H, Yu T, et al. 2018 Opt. Rev. 25 323Google Scholar

    [45]

    Valloee O, Soares M 2004 Airy Functions and Applications to Physics (London: Imperial College Press) p10, 87

    [46]

    Grossman J G, Casperson L W, Stafsudd O M, Sutter Jr L V 1984 Appl. Opt. 23 48Google Scholar

    [47]

    Zhang J, Pang Z, Feng L, Zhong T, Wang L, Deng D M 2017 Chin. Opt. Lett. 15 060501Google Scholar

    [48]

    Feng L, Zhang J, Pang Z, Wang L, Zhong T, Yang X, Deng D M 2017 Opt. Commun. 402 60Google Scholar

    [49]

    Zhang L P, Deng F, Peng Y L 2017 Laser Phys. 27 015404Google Scholar

    [50]

    Xie J T, Zhang J B, Ye J R, Liu H W, Liang Z Y, Long S J, Zhou K Z, Deng D M 2018 Opt. Express 26 5845Google Scholar

    [51]

    Zhang J G, Tian Z W, Li Y F 2018 Optik 158 64Google Scholar

    [52]

    Bai X Q, Wang Y H, Zhang J, Xiao Y 2019 Appl. Phys. B 125 188

    [53]

    Zhu J, Tang H Q, Su Q, Zhu K C 2017 Europhys. Lett. 118 14001Google Scholar

    [54]

    朱洁, 唐慧琴, 李晓利, 刘小钦 2017 物理学报 66 164202Google Scholar

    Zhu J, Tang H Q, Li X L, Liu X Q 2017 Acta Phys. Sin. 66 164202Google Scholar

  • [1] 樊久扬, 张玉贤, 冯晓丽, 黄志祥. 用于分析单轴/双轴双各向异性媒质电磁特性的快速传输矩阵法. 物理学报, 2024, 73(24): . doi: 10.7498/aps.73.20241346
    [2] 袁鹏举, 杨蕴哲, 董世杰, 唐苗苗. 镜像与反镜像扭曲高斯谢尔模光束的传输特性. 物理学报, 2024, 73(21): 214201. doi: 10.7498/aps.73.20241023
    [3] 李顺, 李正军, 屈檀, 李海英, 吴振森. 双零阶贝塞尔波束的传播及对单轴各向异性球的散射特性. 物理学报, 2022, 71(18): 180301. doi: 10.7498/aps.71.20220491
    [4] 赵浩宇, 邓洪昌, 苑立波. Airy光纤:基于阵列波导耦合的光场调控方法. 物理学报, 2017, 66(7): 074211. doi: 10.7498/aps.66.074211
    [5] 洪伟毅. 强时间非局域系统中自相位调制诱导的“脉冲镜像”啁啾. 物理学报, 2015, 64(2): 024214. doi: 10.7498/aps.64.024214
    [6] 国承山, 王淑贞, 荣振宇, 沙贝. Airy加速光束的局域空间频率及其在光束设计中的应用. 物理学报, 2013, 62(8): 084201. doi: 10.7498/aps.62.084201
    [7] 董建峰, 李杰. 单轴各向异性手征介质平板的反射和透射特性研究. 物理学报, 2013, 62(6): 064102. doi: 10.7498/aps.62.064102
    [8] 崔省伟, 陈子阳, 胡克磊, 蒲继雄. 部分相干Airy光束及其传输的研究. 物理学报, 2013, 62(9): 094205. doi: 10.7498/aps.62.094205
    [9] 李乾利, 温廷敦, 许丽萍, 王志斌. 单轴应力对一维镜像光子晶体光子局域态透射峰的影响. 物理学报, 2013, 62(18): 184212. doi: 10.7498/aps.62.184212
    [10] 邓轩兵, 邓冬梅, 陈迟到, 刘承宜. Airy-Gaussian光束的解析矢量结构. 物理学报, 2013, 62(17): 174201. doi: 10.7498/aps.62.174201
    [11] 乐阳阳, 肖寒, 王子潇, 吴敏. 关于Airy光束衍射及自加速性质的研究. 物理学报, 2013, 62(4): 044205. doi: 10.7498/aps.62.044205
    [12] 毕研盟, 陈洁, 杨光林, 廖蜜, 吴荣华. 基于改进的单差法计算GPS掩星附加相位. 物理学报, 2012, 61(14): 149301. doi: 10.7498/aps.61.149301
    [13] 卿绍伟, 鄂鹏, 段萍. 电子温度各向异性对霍尔推力器中等离子体与壁面相互作用的影响. 物理学报, 2012, 61(20): 205202. doi: 10.7498/aps.61.205202
    [14] 姜永远, 张永强, 时红艳, 侯春风, 孙秀冬. 单轴各向异性左手介质表面的Goos-H?nchen位移. 物理学报, 2007, 56(2): 798-804. doi: 10.7498/aps.56.798
    [15] 庄 飞, 沈建其. 双轴各向异性负折射率材料光纤中光子波函数几何相位研究. 物理学报, 2005, 54(2): 955-960. doi: 10.7498/aps.54.955
    [16] 王永强, 李振亚. 具有单轴各向异性场的无规横向伊辛模型(S=1)的临界行为. 物理学报, 1995, 44(5): 811-817. doi: 10.7498/aps.44.811
    [17] 沈文忠, 李振亚. 具有单轴各向异性的磁性超晶格中的自旋波. 物理学报, 1992, 41(8): 1374-1379. doi: 10.7498/aps.41.1374
    [18] 何开元, 熊湘沅. 非晶合金带制备态平面磁各向异性与技术磁性的关系. 物理学报, 1991, 40(11): 1875-1878. doi: 10.7498/aps.40.1875
    [19] 陆学善, 梁敬魁. 德拜特征温度的各向异性与非均匀性. 物理学报, 1981, 30(11): 1498-1507. doi: 10.7498/aps.30.1498
    [20] 张宏图. 具有二重对称轴的弹性各向异性晶体的范性问题. 物理学报, 1959, 15(1): 1-12. doi: 10.7498/aps.15.1
计量
  • 文章访问数:  6324
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-18
  • 修回日期:  2020-02-03
  • 刊出日期:  2020-05-05

/

返回文章
返回