搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低能Cl在Al2O3绝缘微孔膜中的输运过程

哈帅 张文铭 谢一鸣 李鹏飞 靳博 牛犇 魏龙 张琦 刘中林 马越 路迪 万城亮 崔莹 周鹏 张红强 陈熙萌

引用本文:
Citation:

低能Cl在Al2O3绝缘微孔膜中的输运过程

哈帅, 张文铭, 谢一鸣, 李鹏飞, 靳博, 牛犇, 魏龙, 张琦, 刘中林, 马越, 路迪, 万城亮, 崔莹, 周鹏, 张红强, 陈熙萌

Transmission of low-energy Cl ions through Al2O3 insulating nanocapillaries

Ha Shuai, Zhang Wen-Ming, Xie Yi-Ming, Li Peng-Fei, Jin Bo, Niu Ben, Wei Long, Zhang Qi, Liu Zhong-Lin, Ma Yue, Lu Di, Wan Cheng-Liang, Cui Ying, Zhou Peng, Zhang Hong-Qiang, Chen Xi-Meng
PDF
HTML
导出引用
  • 研究了10 keV Cl 离子穿越Al2O3绝缘微孔膜的物理过程, 发现穿越的Cl其分布中心在初束中心即0°附近, Cl离子穿透率下降与几何穿透一致, 这是典型的直接几何穿越有一定角发散的微孔导致的结果; 而出射的Cl0和Cl+以微孔轴向为中心分布, Cl+和Cl0穿透率下降慢于几何穿透. 模拟计算发现沉积电荷会使出射粒子中Cl占主要成分, 并使出射Cl角分布中心移动到微孔轴向方向而随微孔膜倾角移动; 而在不考虑沉积电荷的情况下, 计算结果较好地符合了实验结果. 通过分析在不同倾角下散射过程对出射粒子的角分布和电荷态分布的影响, 发现绝大部分的Cl0是通过一次和两次散射出射的, 其中一次散射出射的Cl0占主要成分, 从而导致出射的Cl0沿微孔轴向出射而Cl+主要是经过一次碰撞出射. 这导致了随倾角增大, 出射的Cl0穿透率下降速度比Cl+小, Cl0所占比例相对增大较快, 从而导致观测到的Cl+/Cl0的比例下降. 本文结果更仔细地描述了低能离子穿越绝缘体微孔的物理机理, 印证了之前实验和理论工作的结果, 发现在10 keV以上能区的Cl离子穿越绝缘微孔膜的过程中, 沉积电荷并未起到主要作用, 其主要穿透特征是散射过程造成的.
    The transmission of 10-keV Cl ions through Al2O3 insulating nanocapillaries is studied both by experiment and simulation. The double-peak structure in the transmitted angular distribution is found to be the same as our previous result. The peak around the direction of the primary beam is caused mainly by the directly transmitted Cl, and the other peak around the tilt angle of Al2O3 nanocapillaries is mainly induced by Cl+ and Cl0. The intensity of transmitted Cl decreases with the tilt angle increasing, which is in accord with the geometrically allowed transmission. Beyond the geometrically allowed angle, the transmitted projectiles are mainly Cl+ ions and Cl0 atoms. The ratio of transmitted Cl+ ion to Cl0 atom drops as tilt angle increases, and it turns more obvious when the tilt angle is larger than the limit of the geometrical transmission. A detailed physics process was developed within Geometry and Tracking 4 (Geant4) to perform the trajectory simulation, in which the forces from the deposited charges and the image charges, the scattering from the surfaces as well as the charge exchange are taken into consideration. The transmissions at the tilt angle of 1.6o are simulated for the cases without and with deposited charges of –100 e/capillary. For the deposition charge quantity of –100 e/capillary, the majority of the transmitted projectiles are mainly the directly transmitted Cl ions exiting to the direction of tilt angle, and the transmitted Cl0 and Cl+ account for a very small portion. While for the case with no deposited charges, the simulation results agree well with the experimental results. The dependence of the scattering process on the tilt angle, which results in the different features in the transmitted projectiles, is studied in detail by the simulation. It is found that the transmitted Cl0 atoms exit through single to multiple scattering, and most of transmitted Cl0 atoms exit through single and double scattering, and are centered along the axis of nanocapillaries, while Cl+ ions mainly exit by single scattering, which results in the fact that the intensity of the transmitted Cl0 atoms drops slower than that of the transmitted Cl+ ions with the increase of the tilt angle, leading the ratio of the transmitted Cl+ to Cl0 to decrease as the tilt angle increases in experiment. Our results describe the physical mechanism of low-energy ions through insulating nanocapillaries in detail, i.e. how the scattering process dominates the final transmission. It is found that the transmission of the negative ions in the energy range above 10 keV is caused by the scattering and the charge exchange process.
      通信作者: 张红强, zhanghq@lzu.edu.cn ; 陈熙萌, chenxm@lzu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: U1732269, 11475075)和瑞典科研与教育国际合作基金(STINT) (批准号: IB2018-8071)资助的课题
      Corresponding author: Zhang Hong-Qiang, zhanghq@lzu.edu.cn ; Chen Xi-Meng, chenxm@lzu.edu.cn
    • Funds: the National Natural Science Foundation of China (Grant Nos. U1732269, 11475075) and the Swedish Foundation for International Cooperation in Research and Higher Education (Grant No. IB2018-8071)
    [1]

    Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201Google Scholar

    [2]

    Schiessl K, Palfinger W, Tőkési K, Nowotny H, Lemell C, Burgdőrfer J 2005 Phys. Rev. A 72 062902Google Scholar

    [3]

    Stolterfoht N, Hellhammer R, Bundesmann J, Fink D, Kanai Y, Hoshino M, Kambara T, Ikeda T, Yamazaki Y P 2007 Phys. Rev. A 76 022712Google Scholar

    [4]

    Skog P, Zhang H Q, Schuch R 2008 Phys. Rev. Lett. 101 223202Google Scholar

    [5]

    Zhang H Q, Skog P, Schuch R 2010 Phys. Rev. A 82 052901Google Scholar

    [6]

    Chen Y F, Chen X M, Lou F J, Xu J Z, Shao J X, Sun G Z, Wang J, Xi F Y, Yin Y Z, Wang X A, Xu J K, Cui Y, Ding B W 2009 Chin. Phys. B 18 2739Google Scholar

    [7]

    Zhang H Q, Akram N, Skog P, Soroka I L, Trautmann C, Schuch R 2012 Phys. Rev. Lett. 108 193202Google Scholar

    [8]

    Zhang H Q, Akram N, Soroka I L, Trautmann C, Schuch R 2012 Phys. Rev. A 86 022901Google Scholar

    [9]

    Zhang H Q, Akram N, Schuch R 2016 Phys. Rev. A 94 032704Google Scholar

    [10]

    Ikeda T, Kanai Y, Kojima T M, Iwai Y, Kambara T, Yamazaki Y P, Hoshino M, Nebiki T, Narusawa T 2006 Appl. Phys. Lett. 89 163502

    [11]

    Iwai Y, Ikeda T, Kojima T M, Yamazaki Y, Maeshima K, Imamoto N, Kobayashi T, Nebiki T, Narusawa T, Pokhil G P 2008 Appl. Phys. Lett. 92 023509Google Scholar

    [12]

    Lemell C, Burgdörfer J, Aumayr F 2013 Prog. Surf. Sci. 88 237Google Scholar

    [13]

    Stolterfoht N, Yasunori Y 2016 Phys. Rep. 629 1Google Scholar

    [14]

    Milosavljević A R, Víkor G, Pešić Z D, Kolarž P, Šević D, Marinković B P, Mátéfi-Tempfli S, Mátéfi-Tempfli M, Piraux L 2007 Phys. Rev. A 75 030901Google Scholar

    [15]

    Das S, Dassanayake B S, Winkworth M, Baran J L, Stolterfoht N, Tanis J A 2007 Phys. Rev. A 76 042716Google Scholar

    [16]

    Schiessl K, Tőkési K, Solleder B, Lemell C, Burgdörfer J 2009 Phys. Rev. Lett. 102 163201Google Scholar

    [17]

    万城亮, 李鹏飞, 钱立冰, 靳博, 宋光银, 高志民, 周利华, 张琦, 宋张勇, 杨治虎, 邵剑雄, 崔莹, Reinhold Schuch, 张红强, 陈熙萌 2016 物理学报 65 204103Google Scholar

    Wan C L, Li P F, Qian L B, Jin Bo, Song G Y, Gao Z M, Zhou L H, Zhang Q, Song Z Y, Yang Z H, Shao J X, Cui Y, Schuch R, Zhang H Q, Chen X M 2016 Acta Phys. Sin. 65 204103Google Scholar

    [18]

    钱立冰, 李鹏飞, 靳博, 靳定坤, 宋光银, 张琦, 魏龙, 牛犇, 万成亮, 周春林, Arnold Milenko Müller, Max Dobeli, 宋张勇, 杨治虎, Reinhold Schuch, 张红强, 陈熙萌 2017 物理学报 66 124101Google Scholar

    Qian L B, Li P F, Jin B, Jin D K, Song G Y, Zhang Q, Wei L, Niu B, Wan C L, Zhou C L, Müller A M, Dobeli M, Song Z Y, Yang Z H, Schuch R, Zhang H Q, Chen X M 2017 Acta Phys. Sin. 66 124101Google Scholar

    [19]

    Sun G, Chen X M, Wang J, Chen Y, Xu J, Zhou C, Shao J, Cui Y, Ding B, Yin Y, Wang X, Lou F, Lv X, Qiu X, Jia J, Chen L, Xi F, Chen Z, Li L, Liu Z 2009 Phys. Rev. A 79 052902Google Scholar

    [20]

    Zhang Q, Liu Z l, Li P F, Jin B, Song G Y, Jin D K, Niu B, Wei L, Ha S, Xie Y M, Ma Y, Wan C L, Cui Y, Zhou P, Zhang H Q, Chen X M 2018 Phys. Rev. A 97 042704Google Scholar

    [21]

    Mátéfi-Tempfli S, Mátéfi-Tempfli M, Piraux L, Juhász Z, Biri S, Fekete É, Ivn I, Gáll F, Sulik B, Víkor G, Pálinkás J, Stolterfoht N 2006 Nanotechnology 17 3915Google Scholar

    [22]

    Skog P, Soroka I L, Johansson A, Schuch R 2007 Nucl. Instrum Methods Phys. Res., Sect. B 258 145Google Scholar

    [23]

    Yu M S, Cui H M, Ai F P, Jiang L F, Kong J S, Zhu X F 2018 Electrochem. Commun. 86 80Google Scholar

    [24]

    Yu M S, Chen L, Yang Y B, Xu S K, Zhang K, Cui H M, Zhu X F 2018 Electrochem. Commun. 90 34Google Scholar

    [25]

    Zhang J J, Huang W Q, Zhang K, Li D Z, Xu H Q, Zhu X F 2019 Electrochem. Commun. 100 48Google Scholar

    [26]

    Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, Arce P, Asai M, Axen D, Banerjee S, Barrand G, Behner F, Bellagamba L, Boudreau J, Broglia L 2003 Nucl. Instrum. Methods Phys. Res., Sect. A. 506 250Google Scholar

    [27]

    Winecki S, Cocke C L, Fry D, Stöckli M P 1996 Phys. Rev. A 53 4228Google Scholar

    [28]

    Firsov O B 1967 Sov. Phys.-Dokl. 11 732

    [29]

    Batra I P 1982 J. Phys. C: Solid State Phys. 15 5399Google Scholar

    [30]

    Fomin V M, Misko V R, Devreese J T, Brongersma H H 1998 Nucl. Instrum. Methods Phys. Res., Sect. B. 145 545Google Scholar

    [31]

    Lienemann J, Blauth D, Wethekam S, Busch M, Winter H, Wurz P, Fuselier S A, Hertzberg E 2011 Nucl. Instrum. Methods Phys. Res., Sect. B 269 915Google Scholar

    [32]

    Jackson J D 1975 Classical Electrodynamics (2nd Ed.) (New York: Wiley)

    [33]

    Tokesi K, Wirtz L, Burgdorfer J 1999 Phys. Scr. T80 247Google Scholar

  • 图 1  实验装置和探测角示意图

    Fig. 1.  Schematic diagram of experimental setup and the observation angle ϕ

    图 2  Al2O3微孔膜的电子扫描显微镜图像

    Fig. 2.  Scanning electron microscope images of Al2O3 nanocapillaries.

    图 3  (a)不同倾角ψ下10 keV的Cl穿透角分布的计算结果(黑色为无沉积电荷的结果, 红色为沉积电荷为–100 e/capillary的结果); (b)不同倾角ψ下10 keV的Cl穿透角分布的实验结果

    Fig. 3.  (a) Calculated transmitted angular distributions for 10 keV-Cl ions at various tile angles ψ (black lines for no deposited charge and red line for deposited charge of –100 e/capillary); (b) the experimental transmitted angular distributions for 10 keV-Cl ions at various tile angles ψ.

    图 4  加静电场后, (a)不同倾角ψ下10 keV的Cl穿透粒子的电荷态分布的计算结果(黑色为无沉积电荷的结果, 红色为沉积电荷为–100 e/capillary的结果); (b)不同倾角ψ下10 keV的Cl穿透粒子的电荷态分布的实验结果

    Fig. 4.  Exerting electrostatic field, (a) thecalculated charge state distributions of transmitted projectiles for 10 keV-Cl at various tilt angles ψ (black line for no deposited charge and red line for deposited charge of –100 e/capillary); (b) the experimental charge state distributions of transmitted projectiles for 10 keV-Cl at various tilt angles ψ.

    图 5  实验与计算结果的中性穿透粒子(Cl0)角分布的峰位置随倾角的变化(实线是线性函数Y = X)

    Fig. 5.  Peak position of experimental and simulated angular distribution of transmitted neutrals (Cl0) as a function of the tilt angle. The solid line is the linear function that shows the peak position of transmitted neutral shifts according to the tilt angle.

    图 6  (a)穿透的Cl, Cl0, Cl+粒子相对强度随倾角ψ变化; (b)穿透的Cl0和Cl+粒子相对强度随倾角ψ变化的对数坐标图

    Fig. 6.  (a) Relative intensity of transmitted Cl, Cl0 and Cl+ vs. the tilt angle ψ for 10 keV-Cl ions; (b) the logarithm scale of the relative intensity of transmitted Cl0 and Cl+ as a function of the tilt angle ψ

    图 7  在不同倾角ψ下10 keV的Cl 穿透的Cl+/Cl0的比值(红色实心圆是实验结果, 黑色实心矩形是计算结果, 蓝色虚线代表几何穿透角)

    Fig. 7.  Intensity ratio of transmitted Cl+ to Cl0 vs. the tilt angle ψ for the incident ions of 10 keV-Cl. The red solid circle corresponds to the experimental results; black solid square corresponds to the simulation results; blue dash line indicates the angle within which the geometrical transmission occurs.

    图 8  入射角为0.6°时, Firsov公式计算的散射粒子角分布

    Fig. 8.  Scattered angular distribution at the incident angle of 0.6° to the surface given by Firsov formula.

    图 9  Cl离子穿过纳米微孔的原理简图(绿线为离子直接穿透的轨迹简图, 红线为一次碰撞散射的轨迹简图, 黑线为二次碰撞散射的简图)

    Fig. 9.  Schematic diagram of Cl ions transmitted through a nanocapillary. The green line is a schematic diagram of the direct transmission of ions, the red line is a schematic diagram of ions transmitted by single scattering, and the black line is a schematic diagram of ions transmitted by double scattering.

    图 10  传输过程的电荷交换简图

    Fig. 10.  Schematic diagram of charge state exchange during transmission.

    图 11  模拟计算的倾角为1.2°时出射的不同电荷态粒子的二维角分布(a)及对应的投影角分布(b)

    Fig. 11.  Two dimensional transmitted angular distributions (a) and corresponding projections (b) of various charge states at tilt angle of 1.2° from simulations.

    图 12  模拟计算出的倾角为1.2°时经不同散射次数出射的Cl0二维角分布(a)及对应的投影角分布(b)

    Fig. 12.  (a) Two-dimensional transmitted angular distributions and (b) corresponding projections of transmitted Cl0 exited from the capillaries by single scattering and double scattering and the total of them at tilt angle of 1.2° from simulations.

    图 13  出射粒子中不同电荷态所占比例随倾角的变化(E代表实验结果, S代表计算结果)

    Fig. 13.  Portions of various charge states in transmitted projectiles as a function of the tilt angle. E and S stand for the results from experiments and simulations, respectively.

    图 14  模拟计算的不同角度0.8°, 1.2°, 1.6°下经过不同碰撞次数的出射的Cl0比例(黑色条形是经一次碰撞出射的, 红色条形是经两次散射出射的, 蓝色条形是经三次碰撞出射的)

    Fig. 14.  Portions of transmitted Cl0 for various scattering at the tilt angle of 0.8°, 1.2°, 1.6°. The black bars stand for single scattering, the red bars for double scattering, and the blue bars for those scattered three times from simulations.

  • [1]

    Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201Google Scholar

    [2]

    Schiessl K, Palfinger W, Tőkési K, Nowotny H, Lemell C, Burgdőrfer J 2005 Phys. Rev. A 72 062902Google Scholar

    [3]

    Stolterfoht N, Hellhammer R, Bundesmann J, Fink D, Kanai Y, Hoshino M, Kambara T, Ikeda T, Yamazaki Y P 2007 Phys. Rev. A 76 022712Google Scholar

    [4]

    Skog P, Zhang H Q, Schuch R 2008 Phys. Rev. Lett. 101 223202Google Scholar

    [5]

    Zhang H Q, Skog P, Schuch R 2010 Phys. Rev. A 82 052901Google Scholar

    [6]

    Chen Y F, Chen X M, Lou F J, Xu J Z, Shao J X, Sun G Z, Wang J, Xi F Y, Yin Y Z, Wang X A, Xu J K, Cui Y, Ding B W 2009 Chin. Phys. B 18 2739Google Scholar

    [7]

    Zhang H Q, Akram N, Skog P, Soroka I L, Trautmann C, Schuch R 2012 Phys. Rev. Lett. 108 193202Google Scholar

    [8]

    Zhang H Q, Akram N, Soroka I L, Trautmann C, Schuch R 2012 Phys. Rev. A 86 022901Google Scholar

    [9]

    Zhang H Q, Akram N, Schuch R 2016 Phys. Rev. A 94 032704Google Scholar

    [10]

    Ikeda T, Kanai Y, Kojima T M, Iwai Y, Kambara T, Yamazaki Y P, Hoshino M, Nebiki T, Narusawa T 2006 Appl. Phys. Lett. 89 163502

    [11]

    Iwai Y, Ikeda T, Kojima T M, Yamazaki Y, Maeshima K, Imamoto N, Kobayashi T, Nebiki T, Narusawa T, Pokhil G P 2008 Appl. Phys. Lett. 92 023509Google Scholar

    [12]

    Lemell C, Burgdörfer J, Aumayr F 2013 Prog. Surf. Sci. 88 237Google Scholar

    [13]

    Stolterfoht N, Yasunori Y 2016 Phys. Rep. 629 1Google Scholar

    [14]

    Milosavljević A R, Víkor G, Pešić Z D, Kolarž P, Šević D, Marinković B P, Mátéfi-Tempfli S, Mátéfi-Tempfli M, Piraux L 2007 Phys. Rev. A 75 030901Google Scholar

    [15]

    Das S, Dassanayake B S, Winkworth M, Baran J L, Stolterfoht N, Tanis J A 2007 Phys. Rev. A 76 042716Google Scholar

    [16]

    Schiessl K, Tőkési K, Solleder B, Lemell C, Burgdörfer J 2009 Phys. Rev. Lett. 102 163201Google Scholar

    [17]

    万城亮, 李鹏飞, 钱立冰, 靳博, 宋光银, 高志民, 周利华, 张琦, 宋张勇, 杨治虎, 邵剑雄, 崔莹, Reinhold Schuch, 张红强, 陈熙萌 2016 物理学报 65 204103Google Scholar

    Wan C L, Li P F, Qian L B, Jin Bo, Song G Y, Gao Z M, Zhou L H, Zhang Q, Song Z Y, Yang Z H, Shao J X, Cui Y, Schuch R, Zhang H Q, Chen X M 2016 Acta Phys. Sin. 65 204103Google Scholar

    [18]

    钱立冰, 李鹏飞, 靳博, 靳定坤, 宋光银, 张琦, 魏龙, 牛犇, 万成亮, 周春林, Arnold Milenko Müller, Max Dobeli, 宋张勇, 杨治虎, Reinhold Schuch, 张红强, 陈熙萌 2017 物理学报 66 124101Google Scholar

    Qian L B, Li P F, Jin B, Jin D K, Song G Y, Zhang Q, Wei L, Niu B, Wan C L, Zhou C L, Müller A M, Dobeli M, Song Z Y, Yang Z H, Schuch R, Zhang H Q, Chen X M 2017 Acta Phys. Sin. 66 124101Google Scholar

    [19]

    Sun G, Chen X M, Wang J, Chen Y, Xu J, Zhou C, Shao J, Cui Y, Ding B, Yin Y, Wang X, Lou F, Lv X, Qiu X, Jia J, Chen L, Xi F, Chen Z, Li L, Liu Z 2009 Phys. Rev. A 79 052902Google Scholar

    [20]

    Zhang Q, Liu Z l, Li P F, Jin B, Song G Y, Jin D K, Niu B, Wei L, Ha S, Xie Y M, Ma Y, Wan C L, Cui Y, Zhou P, Zhang H Q, Chen X M 2018 Phys. Rev. A 97 042704Google Scholar

    [21]

    Mátéfi-Tempfli S, Mátéfi-Tempfli M, Piraux L, Juhász Z, Biri S, Fekete É, Ivn I, Gáll F, Sulik B, Víkor G, Pálinkás J, Stolterfoht N 2006 Nanotechnology 17 3915Google Scholar

    [22]

    Skog P, Soroka I L, Johansson A, Schuch R 2007 Nucl. Instrum Methods Phys. Res., Sect. B 258 145Google Scholar

    [23]

    Yu M S, Cui H M, Ai F P, Jiang L F, Kong J S, Zhu X F 2018 Electrochem. Commun. 86 80Google Scholar

    [24]

    Yu M S, Chen L, Yang Y B, Xu S K, Zhang K, Cui H M, Zhu X F 2018 Electrochem. Commun. 90 34Google Scholar

    [25]

    Zhang J J, Huang W Q, Zhang K, Li D Z, Xu H Q, Zhu X F 2019 Electrochem. Commun. 100 48Google Scholar

    [26]

    Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, Arce P, Asai M, Axen D, Banerjee S, Barrand G, Behner F, Bellagamba L, Boudreau J, Broglia L 2003 Nucl. Instrum. Methods Phys. Res., Sect. A. 506 250Google Scholar

    [27]

    Winecki S, Cocke C L, Fry D, Stöckli M P 1996 Phys. Rev. A 53 4228Google Scholar

    [28]

    Firsov O B 1967 Sov. Phys.-Dokl. 11 732

    [29]

    Batra I P 1982 J. Phys. C: Solid State Phys. 15 5399Google Scholar

    [30]

    Fomin V M, Misko V R, Devreese J T, Brongersma H H 1998 Nucl. Instrum. Methods Phys. Res., Sect. B. 145 545Google Scholar

    [31]

    Lienemann J, Blauth D, Wethekam S, Busch M, Winter H, Wurz P, Fuselier S A, Hertzberg E 2011 Nucl. Instrum. Methods Phys. Res., Sect. B 269 915Google Scholar

    [32]

    Jackson J D 1975 Classical Electrodynamics (2nd Ed.) (New York: Wiley)

    [33]

    Tokesi K, Wirtz L, Burgdorfer J 1999 Phys. Scr. T80 247Google Scholar

  • [1] 相萌, 何飘, 王天宇, 袁琳, 邓凯, 刘飞, 邵晓鹏. 计算偏振彩色傅里叶叠层成像: 散射光场偏振特性的复用技术. 物理学报, 2024, 73(12): 124202. doi: 10.7498/aps.73.20240268
    [2] 李亮亮, 王晓方. 高能带电粒子束对陡峭密度梯度区照相的散射效应解析模型. 物理学报, 2022, 71(11): 115201. doi: 10.7498/aps.70.20212269
    [3] 李亮亮, 王晓方. 高能带电粒子束对陡峭密度梯度区照相的散射效应解析模型及散射调制现象的特征. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212269
    [4] 李顺, 李正军, 屈檀, 李海英, 吴振森. 双零阶贝塞尔波束的传播及对单轴各向异性球的散射特性. 物理学报, 2022, 71(18): 180301. doi: 10.7498/aps.71.20220491
    [5] 程晨, 史泽林, 崔生成, 徐青山. 改进的单次散射相函数解析表达式. 物理学报, 2017, 66(18): 180201. doi: 10.7498/aps.66.180201
    [6] 付成花. 微纳粒子光学散射分析. 物理学报, 2017, 66(9): 097301. doi: 10.7498/aps.66.097301
    [7] 马艳, 林书玉, 鲜晓军. 次Bjerknes力作用下气泡的体积振动和散射声场. 物理学报, 2016, 65(1): 014301. doi: 10.7498/aps.65.014301
    [8] 庄佳衍, 陈钱, 何伟基, 冒添逸. 基于压缩感知的动态散射成像. 物理学报, 2016, 65(4): 040501. doi: 10.7498/aps.65.040501
    [9] 白敏, 宣荣喜, 宋建军, 张鹤鸣, 胡辉勇, 舒斌. 压应变Ge/(001)Si1-xGex空穴散射与迁移率模型. 物理学报, 2015, 64(3): 038501. doi: 10.7498/aps.64.038501
    [10] 张会云, 刘蒙, 尹贻恒, 吴志心, 申端龙, 张玉萍. 基于格林函数法研究金属线栅在太赫兹波段的散射特性. 物理学报, 2013, 62(19): 194207. doi: 10.7498/aps.62.194207
    [11] 王海华, 孙贤明. 两种按比例混合颗粒系的多次散射模拟. 物理学报, 2012, 61(15): 154204. doi: 10.7498/aps.61.154204
    [12] 赵太飞, 柯熙政. Monte Carlo方法模拟非直视紫外光散射覆盖范围. 物理学报, 2012, 61(11): 114208. doi: 10.7498/aps.61.114208
    [13] 贺静波, 刘忠, 胡生亮. 基于海杂波散射特性的微弱信号检测方法. 物理学报, 2011, 60(11): 110208. doi: 10.7498/aps.60.110208
    [14] 程木田. 经典光场相干控制金属纳米线表面等离子体传输. 物理学报, 2011, 60(11): 117301. doi: 10.7498/aps.60.117301
    [15] 刘文军, 毛宏燕, 付国庆, 曲士良. 散射介质中多重散射太赫兹脉冲的时域统计特性. 物理学报, 2010, 59(2): 913-917. doi: 10.7498/aps.59.913
    [16] 陈星, 夏云杰. 双模压缩真空态和纠缠相干态的一维势垒散射. 物理学报, 2010, 59(1): 80-86. doi: 10.7498/aps.59.80
    [17] 王清华, 张颖颖, 来建成, 李振华, 贺安之. Mie理论在生物组织散射特性分析中的应用. 物理学报, 2007, 56(2): 1203-1207. doi: 10.7498/aps.56.1203
    [18] 刘丽想, 杜国浩, 胡 雯, 骆玉宇, 谢红兰, 陈 敏, 肖体乔. 利用定量相衬成像消除X射线同轴轮廓成像中散射的影响. 物理学报, 2006, 55(12): 6387-6394. doi: 10.7498/aps.55.6387
    [19] 白 璐, 吴振森, 陈 辉, 郭立新. 高斯波束入射下串粒子的散射问题. 物理学报, 2005, 54(5): 2025-2029. doi: 10.7498/aps.54.2025
    [20] 李飞飞, 许京军, 刘思敏, 乔海军, 张光寅. c向切割LiNbO3∶Fe晶体中光折变光散射. 物理学报, 2001, 50(12): 2341-2344. doi: 10.7498/aps.50.2341
计量
  • 文章访问数:  5662
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-16
  • 修回日期:  2020-02-17
  • 刊出日期:  2020-05-05

/

返回文章
返回