搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于分析单轴/双轴双各向异性媒质电磁特性的快速传输矩阵法

樊久扬 张玉贤 冯晓丽 黄志祥

引用本文:
Citation:

用于分析单轴/双轴双各向异性媒质电磁特性的快速传输矩阵法

樊久扬, 张玉贤, 冯晓丽, 黄志祥
cstr: 32037.14.aps.73.20241346

Rapid-transfer matrix method for analyzing electromagnetic properties of uniaxial/biaxial bianisotropic media

Fan Jiu-Yang, Zhang Yu-Xian, Feng Xiao-Li, Huang Zhi-Xiang
cstr: 32037.14.aps.73.20241346
PDF
HTML
导出引用
  • 提出了一种高效分析单轴/双轴双各向异性媒质电磁特性的快速传输矩阵法(rapid-transfer matrix method, R-TMM). 该方法基于旋度麦克斯韦方程, 构造了关于电场的齐次微分方程, 并通过复杂的矩阵运算, 导出用于特征值求解的布克四次方程. 随后, 从特征方程中提取单轴/双轴双各向异性媒质的特征值. 在此基础之上, 通过对层状结构中电磁场在分界面处切向连续性的深入研究, 构建了适用于多层媒质中平面波传播的传输矩阵. 结合上下行波在不同区域的传播关系, 推导出单轴/双轴双各向异性传播系数的计算公式. 最后, 设计了单轴/双轴双各向异性材料模型, 并对R-TMM和传统传输矩阵法(conventional-transfer matrix method, C-TMM)的计算结果进行了分析. 数值实验表明, R-TMM不仅能够精确计算单轴/双轴双各向异性媒质的传输系数, 而且可以实现计算效率的大幅度提升. 该方法为科研人员开展单轴/双各向异性媒质电磁特性的研究提供了可靠且高效的计算策略.
    Uniaxial/biaxial bianisotropic materials are widespreadly used in manufacturing optical devices , owing to their distinctive electromagnetic response characteristics. To effectively analyze the electromagnetic properties of uniaxial/biaxial bianisotropic materials, rapid-transfer matrix method (R-TMM) to investigate the propagation process of plane waves in the media is proposed. Starting from the Maxwell’s equations in the time domain, a homogeneous differential equation about the electric field is constructed by processing the matrix containing dielectric and magnetic conductivity, electric and magnetic loss, tellegen and chirality carrier parameters, and the complex matrix operation is applied to that equation to obtain the Booker quartic equation, and then the formulae method is utilized to obtain the eigenvalues in the uniaxial/biaxial bianisotropic media. Subsequently, the tangential continuity of layered media at the interface is employed to establish a transfer matrix for single-layered media. In the case of multi-layered media, the transfer matrix of plane waves propagating in multi-layered uniaxial/biaxial bianisotropic media can be obtained by means of a continuous iteration process based on the transfer matrix of single-layered media. The formula for calculating the propagation coefficients of uniaxial/biaxial bianisotropic materials can be derived based on the different upward and downward waves in the reflection/transmission region. Finally, the reliability and efficiency of R-TMM are verified from two numerical experiments with the plane waves incident at different angles on uniaxial/biaxial bianisotropic media. The first experiment is designed as a single-layered biaxial bianisotropic model with more general electromagnetic parameters, and the second experiment is designed as a double-layered uniaxial and biaxial bianisotropic model consisting of common optical materials, which are composed of two non-magnetic materials, lithium niobate (LiNbO3) and cadmium sulfide (CdS). The experimental results demonstrate that compared with the conventional conventional-transfer matrix method (C-TMM), the R-TMM reduces the computational memory and CPU time required for calculating the reflection and transmission coefficients of the uniaxial/biaxial bianisotropic model by over 98%, while maintaining the accuracy of the reflection and transmission coefficient calculations. Therefore, R-TMM provides an efficient and dependable approach for the designing complex optical devices and analyzing uniaxial/biaxial bianisotropic propagation characteristics.
      通信作者: 张玉贤, yxzhang_tute@126.com
    • 基金项目: 国家自然科学基金(批准号: 62101333)和安徽省高校优秀科研创新团队项目(批准号: 2022AH010002)资助的课题.
      Corresponding author: Zhang Yu-Xian, yxzhang_tute@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62101333) and the Program for Excellent Scientific and Innovation Research Team of Anhui Province, China (Grant No. 2022AH010002).
    [1]

    Chen Y X, Duan G Y, Xu C Y, Qin X F, Zhao Q, Zhou H Q, Wang B X 2024 Diam. Relat. Mater. 143 110939Google Scholar

    [2]

    Hosseini K, Atlasbaf Z 2018 IEEE Trans. Antennas Propag. 66 7483Google Scholar

    [3]

    Ahmed F, Hassan T, Shoaib N 2020 IEEE Antennas Wirel. Propag. Lett. 19 1833Google Scholar

    [4]

    Dong Z J, Feng X, Zhou H Q, Liu C, Zhang M H, Liang W J 2023 IEEE Trans. Geosci. Remote Sens. 61 4503120Google Scholar

    [5]

    Kong J A 1972 Proc. IEEE 60 1036Google Scholar

    [6]

    王一平 2007 工程电动力学 (第二版) (西安: 西安电子科技大学出版社) 第23−24页

    Wang Y P 2007 Engineering Electrodynamics (2rd Ed.) (Xi’ an: Xidian University Press) pp23–24

    [7]

    Zarifi D, Soleimani M, Abdolali A 2014 IEEE Trans. Antennas Propag. 62 1538Google Scholar

    [8]

    Dimitriadis A I, Kantartzis N V, Tsiboukis T D 2013 IEEE Trans. Magn. 49 1769Google Scholar

    [9]

    Mousvai S M, Arand B A, Forooraghi K 2021 IEEE Access. 9 54241Google Scholar

    [10]

    Hasar U C, Ozturk G, Kaya Y, Barroso J J, Ertugrul M 2021 IEEE Trans. Antennas Propag. 69 7064Google Scholar

    [11]

    Karimi P, Rejaei B, Khavasi A 2023 IEEE Trans. Antennas Propag. 71 2507Google Scholar

    [12]

    陈伟, 黄海, 杨利霞, 薄勇, 黄志祥 2023 物理学报 72 060201Google Scholar

    Chen W, Huang H, Yang L X, Bo Y, Huang Z X 2023 Acta Phys. Sin. 72 060201Google Scholar

    [13]

    谢国大, 侯桂林, 牛凯坤, 冯乃星, 方明, 李迎松, 黄志祥 2023 物理学报 72 150201Google Scholar

    Xie G D, Hou G L, Niu K K, Feng N X, Fang M, Li Y S, Huang Z X 2023 Acta Phys. Sin. 72 150201Google Scholar

    [14]

    Demarest K 1987 IEEE Trans. Antennas Propag. 35 826Google Scholar

    [15]

    葛德彪, 闫玉波 2005 电磁波时域有限差分方法 (第三版) (西安: 西安电子科技大学出版社) 第259—294页

    Ge D B, Yan Y B 2005 Finite-Difference Time-Domain Method for Electromagnetic Waves (3rd Ed.) (Xi’an: Xidian University Press) pp259−294

    [16]

    王飞, 葛德彪, 魏兵 2009 物理学报 58 6356Google Scholar

    Wang F, Ge D B, Wei B 2009 Acta Phys. Sin. 58 6356Google Scholar

    [17]

    Greenwood A D, Jin J M 1999 IEEE Trans. Antennas Propag. 47 1260Google Scholar

    [18]

    孙宏祥, 许伯强, 王纪俊, 徐桂东, 徐晨光, 王峰 2009 物理学报 58 6344Google Scholar

    Sun H X, Xu B Q, Wang J J, Xu G D, Xu C G, Wang F 2009 Acta Phys. Sin. 58 6344Google Scholar

    [19]

    Hanninen I, Nikoskinen K 2008 IEEE Trans. Antennas Propag. 56 278Google Scholar

    [20]

    王哲, 王秉中 2014 物理学报 63 120202Google Scholar

    Wang Z, Wang B Z 2014 Acta Phys. Sin. 63 120202Google Scholar

    [21]

    葛德彪, 魏兵 2011 电磁波理论 (北京: 科学出版社) 第62—73页

    Ge D B, Wei B 2011 Electromagnetic Waves Theory (Beijing: Science Press) pp62−73

    [22]

    Johnston T W 1969 Radio Sci. 4 729Google Scholar

    [23]

    Chen H C 1981 Radio Sci. 16 1213Google Scholar

    [24]

    Tan E L, Tan S Y 1999 IEEE Trans. Antennas Propag. 47 1820Google Scholar

    [25]

    郑宏兴, 葛德彪 2000 物理学报 49 1702Google Scholar

    Zheng H X, Ge D B 2000 Acta Phys. Sin. 49 1702Google Scholar

    [26]

    Jiang Y Y, Shi H Y, Zhang Y Q, Hou C F, Sun X D 2007 Chin. Phys. 16 1959Google Scholar

    [27]

    Sarrafi P, Qian L 2012 IEEE J. Quantum Electron. 48 559Google Scholar

    [28]

    王飞, 魏兵 2019 物理学报 68 244101Google Scholar

    Wang F, Wei B 2019 Acta Phys. Sin. 68 244101Google Scholar

    [29]

    Zhang Y X, Feng N X, Wang G P, Zheng H X 2021 IEEE Trans. Antennas Propag. 69 4727Google Scholar

  • 图 1  平面波在单轴/双轴双各向异性媒质中的双折射现象

    Fig. 1.  Birefringence phenomenon of plane waves in uniaxial/biaxial bianisotropic media.

    图 2  平面波在层状单轴/双轴双各向异性媒质中传播

    Fig. 2.  Propagation of plane waves in layered uniaxial/biaxial bianisotropic media.

    图 3  单层媒质的模型图

    Fig. 3.  Model diagram of single-layered medium.

    图 4  TE模式下, 单层双轴双各向异性媒质传播系数的对比 (a)反射系数; (b)透射系数

    Fig. 4.  Comparison of propagation coefficients for single-layered biaxial bianisotropic media in TE mode: (a) Reflection coefficient; (b) transmission coefficient.

    图 5  TM模式下, 单层双轴双各向异性媒质传播系数的对比 (a)反射系数; (b)透射系数

    Fig. 5.  Comparison of propagation coefficients for single-layered biaxial bianisotropic media in TM mode: (a) Reflection coefficient; (b) transmission coefficient.

    图 6  多层光学材料模型图

    Fig. 6.  Model diagram of multi-layered optical material.

    图 7  TE模式下, 多层光学材料传播系数的对比 (a)反射系数; (b)透射系数

    Fig. 7.  Comparison of propagation coefficients for multi-layered optical materials in TE mode: (a) Reflection coefficients; (b) transmission coefficients.

    图 8  TM模式下, 多层光学材料传播系数的对比 (a)反射系数; (b)透射系数

    Fig. 8.  Comparison of propagation coefficients for multi-layered optical materials in TM mode: (a) Reflection coefficients; (b) transmission coefficients.

    表 1  单层双轴双各向异性的电磁参数

    Table 1.  Electromagnetic parameters of single-layered biaxial bianisotropic medium.

    $\boldsymbol\varepsilon_{\rm r}$ $\boldsymbol \mu_{\rm r} $ $\boldsymbol \sigma_{\rm e} $ $\boldsymbol \sigma_{\rm m} $
    $ \left[ {\begin{array}{*{20}{c}} {5.6}&0&0 \\ 0&{4.8}&0 \\ 0&0&{6.1} \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} {2.9}&0&0 \\ 0&{4.2}&0 \\ 0&0&{2.6} \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} {2.9}&0&0 \\ 0&{4.2}&0 \\ 0&0&{2.6} \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} {271}&0&0 \\ 0&{422}&0 \\ 0&0&{354} \end{array}} \right] $
    $\boldsymbol \xi $ $\boldsymbol \zeta $
    $ \left[ {\begin{array}{*{20}{c}} {3.9 + 0.01{\text{j}}}&0&0 \\ 0&{5.3 + 0.03{\text{j}}}&0 \\ 0&0&{4.3 + 0.06{\text{j}}} \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} {3.9 - 0.01{\text{j}}}&0&0 \\ 0&{5.3 - 0.03{\text{j}}}&0 \\ 0&0&{4.3 - 0.06{\text{j}}} \end{array}} \right] $
    下载: 导出CSV

    表 2  C-TMM和R-TMM计算单层媒质传播系数的效率比较

    Table 2.  Comparison of efficiency between C-TMM and R-TMM in calculating the propagation coefficients of single-layered medium.

    方法CPU核数内存/MBCPU时间/s

    TE

    TM
    C-TMM1729.49.254110.6075
    R-TMM15.30.13030.1521
    比率 (R-TMM / C-TMM)0.00730.014080.01434
    下载: 导出CSV

    表 3  两种光学材料的电磁参数

    Table 3.  Electromagnetic parameters of two optical materials.

    Media $\boldsymbol\varepsilon_{\rm r}$ $\boldsymbol\mu_{\rm r}$ $\boldsymbol\sigma_{\rm r}$ $\boldsymbol\sigma_{\rm r}$
    LiNbO3 $ \left[ {\begin{array}{*{20}{c}} {32.3}&0&0 \\ 0&{32.3}&0 \\ 0&0&{37.4} \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} {1.0}&0&0 \\ 0&{1.0}&0 \\ 0&0&{1.1} \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} {4.9}&0&0 \\ 0&{4.9}&0 \\ 0&0&{5.8} \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} {356}&0&0 \\ 0&{356}&0 \\ 0&0&{564} \end{array}} \right] $
    CdS $ \left[ {\begin{array}{*{20}{c}} {6.25}&0&0 \\ 0&{6.01}&0 \\ 0&0&{6.32} \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} {1.0}&0&0 \\ 0&{1.0}&0 \\ 0&0&{1.0} \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} {0.02}&0&0 \\ 0&{0.03}&0 \\ 0&0&{0.01} \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} 0&0&0 \\ 0&0&0 \\ 0&0&0 \end{array}} \right] $
    Media $\boldsymbol\xi $ $\boldsymbol\zeta $
    LiNbO3 $ \left[ {\begin{array}{*{20}{c}} {0.02}&0&0 \\ 0&{0.02}&0 \\ 0&0&{0.01} \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} {0.02}&0&0 \\ 0&{0.02}&0 \\ 0&0&{0.01} \end{array}} \right] $
    CdS $ \left[ {\begin{array}{*{20}{c}} {4.5 + 0.01{\text{j}}}&0&0 \\ 0&{6.6 + 0.02{\text{j}}}&0 \\ 0&0&{3.9 + 0.01{\text{j}}} \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} {4.5 - 0.01{\text{j}}}&0&0 \\ 0&{6.6 - 0.02{\text{j}}}&0 \\ 0&0&{3.9 - 0.01{\text{j}}} \end{array}} \right] $
    下载: 导出CSV

    表 4  C-TMM和R-TMM在计算多层光学材料传播系数时的效率对比

    Table 4.  Comparison of efficiency between C-TMM and R-TMM in calculating the propagation coefficient of multilayer optical materials.

    方法 CPU核数 内存/MB CPU时间/s
    TE TM
    C-TMM 1 744.2 11.8062 11.8935
    R-TMM 1 7.6 0.1796 0.1851
    比率 (R-TMM/C-TMM) 0.0102 0.0152 0.0156
    下载: 导出CSV
  • [1]

    Chen Y X, Duan G Y, Xu C Y, Qin X F, Zhao Q, Zhou H Q, Wang B X 2024 Diam. Relat. Mater. 143 110939Google Scholar

    [2]

    Hosseini K, Atlasbaf Z 2018 IEEE Trans. Antennas Propag. 66 7483Google Scholar

    [3]

    Ahmed F, Hassan T, Shoaib N 2020 IEEE Antennas Wirel. Propag. Lett. 19 1833Google Scholar

    [4]

    Dong Z J, Feng X, Zhou H Q, Liu C, Zhang M H, Liang W J 2023 IEEE Trans. Geosci. Remote Sens. 61 4503120Google Scholar

    [5]

    Kong J A 1972 Proc. IEEE 60 1036Google Scholar

    [6]

    王一平 2007 工程电动力学 (第二版) (西安: 西安电子科技大学出版社) 第23−24页

    Wang Y P 2007 Engineering Electrodynamics (2rd Ed.) (Xi’ an: Xidian University Press) pp23–24

    [7]

    Zarifi D, Soleimani M, Abdolali A 2014 IEEE Trans. Antennas Propag. 62 1538Google Scholar

    [8]

    Dimitriadis A I, Kantartzis N V, Tsiboukis T D 2013 IEEE Trans. Magn. 49 1769Google Scholar

    [9]

    Mousvai S M, Arand B A, Forooraghi K 2021 IEEE Access. 9 54241Google Scholar

    [10]

    Hasar U C, Ozturk G, Kaya Y, Barroso J J, Ertugrul M 2021 IEEE Trans. Antennas Propag. 69 7064Google Scholar

    [11]

    Karimi P, Rejaei B, Khavasi A 2023 IEEE Trans. Antennas Propag. 71 2507Google Scholar

    [12]

    陈伟, 黄海, 杨利霞, 薄勇, 黄志祥 2023 物理学报 72 060201Google Scholar

    Chen W, Huang H, Yang L X, Bo Y, Huang Z X 2023 Acta Phys. Sin. 72 060201Google Scholar

    [13]

    谢国大, 侯桂林, 牛凯坤, 冯乃星, 方明, 李迎松, 黄志祥 2023 物理学报 72 150201Google Scholar

    Xie G D, Hou G L, Niu K K, Feng N X, Fang M, Li Y S, Huang Z X 2023 Acta Phys. Sin. 72 150201Google Scholar

    [14]

    Demarest K 1987 IEEE Trans. Antennas Propag. 35 826Google Scholar

    [15]

    葛德彪, 闫玉波 2005 电磁波时域有限差分方法 (第三版) (西安: 西安电子科技大学出版社) 第259—294页

    Ge D B, Yan Y B 2005 Finite-Difference Time-Domain Method for Electromagnetic Waves (3rd Ed.) (Xi’an: Xidian University Press) pp259−294

    [16]

    王飞, 葛德彪, 魏兵 2009 物理学报 58 6356Google Scholar

    Wang F, Ge D B, Wei B 2009 Acta Phys. Sin. 58 6356Google Scholar

    [17]

    Greenwood A D, Jin J M 1999 IEEE Trans. Antennas Propag. 47 1260Google Scholar

    [18]

    孙宏祥, 许伯强, 王纪俊, 徐桂东, 徐晨光, 王峰 2009 物理学报 58 6344Google Scholar

    Sun H X, Xu B Q, Wang J J, Xu G D, Xu C G, Wang F 2009 Acta Phys. Sin. 58 6344Google Scholar

    [19]

    Hanninen I, Nikoskinen K 2008 IEEE Trans. Antennas Propag. 56 278Google Scholar

    [20]

    王哲, 王秉中 2014 物理学报 63 120202Google Scholar

    Wang Z, Wang B Z 2014 Acta Phys. Sin. 63 120202Google Scholar

    [21]

    葛德彪, 魏兵 2011 电磁波理论 (北京: 科学出版社) 第62—73页

    Ge D B, Wei B 2011 Electromagnetic Waves Theory (Beijing: Science Press) pp62−73

    [22]

    Johnston T W 1969 Radio Sci. 4 729Google Scholar

    [23]

    Chen H C 1981 Radio Sci. 16 1213Google Scholar

    [24]

    Tan E L, Tan S Y 1999 IEEE Trans. Antennas Propag. 47 1820Google Scholar

    [25]

    郑宏兴, 葛德彪 2000 物理学报 49 1702Google Scholar

    Zheng H X, Ge D B 2000 Acta Phys. Sin. 49 1702Google Scholar

    [26]

    Jiang Y Y, Shi H Y, Zhang Y Q, Hou C F, Sun X D 2007 Chin. Phys. 16 1959Google Scholar

    [27]

    Sarrafi P, Qian L 2012 IEEE J. Quantum Electron. 48 559Google Scholar

    [28]

    王飞, 魏兵 2019 物理学报 68 244101Google Scholar

    Wang F, Wei B 2019 Acta Phys. Sin. 68 244101Google Scholar

    [29]

    Zhang Y X, Feng N X, Wang G P, Zheng H X 2021 IEEE Trans. Antennas Propag. 69 4727Google Scholar

  • [1] 李顺, 李正军, 屈檀, 李海英, 吴振森. 双零阶贝塞尔波束的传播及对单轴各向异性球的散射特性. 物理学报, 2022, 71(18): 180301. doi: 10.7498/aps.71.20220491
    [2] 孙娟, 李晓霞, 张金浩, 申玉卓, 李艳雨. 多层单向耦合星形网络的特征值谱及同步能力分析. 物理学报, 2017, 66(18): 188901. doi: 10.7498/aps.66.188901
    [3] 徐明明, 陆君安, 周进. 两层星形网络的特征值谱及同步能力. 物理学报, 2016, 65(2): 028902. doi: 10.7498/aps.65.028902
    [4] 焦宝宝. 用重正交化Lanczos法求解大型非正交归一基稀疏矩阵的特征值问题. 物理学报, 2016, 65(19): 192101. doi: 10.7498/aps.65.192101
    [5] 郝本建, 李赞, 万鹏武, 司江勃. 传感器网络基于特征值分解的信号被动定位技术. 物理学报, 2014, 63(5): 054304. doi: 10.7498/aps.63.054304
    [6] 何圣仲, 周国华, 许建平, 吴松荣, 阎铁生, 张希. 谷值V2控制Boost变换器的精确建模与动力学分析. 物理学报, 2014, 63(17): 170503. doi: 10.7498/aps.63.170503
    [7] 董建峰, 李杰. 单轴各向异性手征介质平板的反射和透射特性研究. 物理学报, 2013, 62(6): 064102. doi: 10.7498/aps.62.064102
    [8] 梁义, 王兴元. 基于低阶矩阵最大特征值的复杂网络牵制混沌同步. 物理学报, 2012, 61(3): 038901. doi: 10.7498/aps.61.038901
    [9] 季颖, 毕勤胜. 高维广义蔡氏电路中的快慢动力学行为及其分岔分析. 物理学报, 2012, 61(1): 010202. doi: 10.7498/aps.61.010202
    [10] 朱廷祥, 吴晔, 肖井华. 一种有效的提高复杂网络同步能力的自适应方法. 物理学报, 2012, 61(4): 040502. doi: 10.7498/aps.61.040502
    [11] 侯小娟, 云国宏, 白宇浩, 白那日苏, 周文平. 量子自旋波本征值及易轴型各向异性对其的影响. 物理学报, 2011, 60(5): 056805. doi: 10.7498/aps.60.056805
    [12] 李卓轩, 裴丽, 祁春慧, 彭万敬, 宁提纲, 赵瑞峰, 高嵩. 光纤光栅法布里-珀罗腔的V-I传输矩阵法研究. 物理学报, 2010, 59(12): 8615-8624. doi: 10.7498/aps.59.8615
    [13] 曹京晓, 胡 巍, 罗海陆, 杨湘波. 傍轴光束在单轴左手介质中传输的矢量性质. 物理学报, 2007, 56(4): 2131-2138. doi: 10.7498/aps.56.2131
    [14] 姜永远, 张永强, 时红艳, 侯春风, 孙秀冬. 单轴各向异性左手介质表面的Goos-H?nchen位移. 物理学报, 2007, 56(2): 798-804. doi: 10.7498/aps.56.798
    [15] 庄 飞, 沈建其. 双轴各向异性负折射率材料光纤中光子波函数几何相位研究. 物理学报, 2005, 54(2): 955-960. doi: 10.7498/aps.54.955
    [16] 王辉, 李永平. 用特征矩阵法计算光子晶体的带隙结构. 物理学报, 2001, 50(11): 2172-2178. doi: 10.7498/aps.50.2172
    [17] 郑宏兴, 葛德彪. 广义传播矩阵法分析分层各向异性材料对电磁波的反射与透射. 物理学报, 2000, 49(9): 1702-1705. doi: 10.7498/aps.49.1702
    [18] 赖建文, 周世平, 李国辉, 徐得名. 非重正交的李雅普诺夫指数谱的计算方法. 物理学报, 2000, 49(12): 2328-2332. doi: 10.7498/aps.49.2328
    [19] 王永强, 李振亚. 具有单轴各向异性场的无规横向伊辛模型(S=1)的临界行为. 物理学报, 1995, 44(5): 811-817. doi: 10.7498/aps.44.811
    [20] 沈文忠, 李振亚. 具有单轴各向异性的磁性超晶格中的自旋波. 物理学报, 1992, 41(8): 1374-1379. doi: 10.7498/aps.41.1374
计量
  • 文章访问数:  243
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-24
  • 修回日期:  2024-11-05
  • 上网日期:  2024-11-13

/

返回文章
返回