搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等离子体-光子晶体阵列结构波导模型的电磁特性

杨雨森 王林 苟德梽 唐正明

引用本文:
Citation:

等离子体-光子晶体阵列结构波导模型的电磁特性

杨雨森, 王林, 苟德梽, 唐正明
cstr: 32037.14.aps.73.20241300

Electromagnetic characteristics of waveguide model of plasma-photon crystal array structure

Yang Yu-Sen, Wang Lin, Gou De-Zhi, Tang Zheng-Ming
cstr: 32037.14.aps.73.20241300
PDF
HTML
导出引用
  • 为进一步研究光子晶体对电磁波传输的影响, 提出了等离子体光子晶体阵列结构波导模型, 以期能够实现对电磁波的传输调控. 该模型结构能够在W波段实现多频点高效传输, 在缺陷空位中心处加入等离子体柱后能够对电磁波进行限幅. 通过改变渐变结构参数、等离子体参数等因素可调控电磁波的传输效果. 研究结果表明, 电磁波在无等离子体干扰的情况下, 能实现85.2, 92.1, 98.5, 102.4, 106 GHz等多个频点的高效传输, 其传输系数均大于-0.42 dB. 构造的渐变结构能够使在谐振频率下缺陷空位周围形成不同的强电场, 致使气体击穿产生高浓度微波等离子体, 实现对电磁波的反射功率、传输功率和吸收功率的有效调控. 此外, 改变等离子体柱的尺寸大小, 可以进一步调节电磁波在不同频点下的传输特性. 该研究能够为高频电磁波的传输与微波器件的设计提供支撑依据.
    Photonic crystal with periodic dielectric constant distribution has become the focus of theoretical and applied research in recent years because of their bandgap structure similar to the electronic states in semiconductors. It is also a promising method of creating a stable low power microplasma. This research field makes it possible to explore plasma science using microplasmas driven by millimeter wave bands. The dispersive and dissipative properties of plasma make plasma photonic crystals have properties that conventional dielectric photonic crystals do not have. The properties and parameters of plasma photonic crystal can be artificially controlled by changing the parameters of the plasma. To further investigate the influence of photonic crystals on electromagnetic wave transmission, a waveguide model with a plasma photonic crystal array structure is proposed in order to achieve modulation of electromagnetic wave transmission. This proposed model structure can achieve multiple frequency transmission points, making up for the shortcoming of single frequency point transmission in the W-band. Meanwhile, adding a plasma column to the center of defect vacancy in the gradient structure can limit the amplitude of electromagnetic waves and regulate the transmission of electromagnetic waves at different resonant frequencies. The results show that electromagnetic wave can achieve efficient transmission at multiple frequency points such as 85.2, 92.1, 98.5, 102.4, 106 GHz without plasma interference, and transmission coefficients are greater than –0.42 dB. The construction of gradient structure can form different strong electric fields around the defect vacancy at the resonance frequency, resulting in gas breakdown and the generation of high-concentration microwave plasma, achieving effective control of the reflected power, transmitted power and absorbed power of electromagnetic wave. When the plasma concentration reaches the plasma frequency equivalent to the incident wave frequency, the electromagnetic wave can be transmitted with less loss in this period. When it achieves a considerable degree or higher, the electromagnetic wave will be rapidly absorbed or reflected by the high concentration plasma, and the transmission power will decrease rapidly, and finally stabilize at a low level. In addition, changing the size of the plasma column can further adjust the transmission characteristics of electromagnetic waves at different frequency points. This research can provide support for the transmission of high-frequency electromagnetic waves and the design of microwave devices.
      通信作者: 王林, 178112379@163.com
    • 基金项目: 国家自然科学基金(批准号: 62301449, 62401478)、四川省自然科学基金(批准号: 2024NSFSC1411)、电磁技术与工程南充市重点实验室(批准号: NCKL202005)和西华师范大学校级基本科研业务费基金(批准号: 22kE005, 23kc003, KCXTD2024-2)资助的课题.
      Corresponding author: Wang Lin, 178112379@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62301449, 62401478), the Natural Science Foundation of Sichuan Province, China (Grant No. 2024NSFSC1411), the Electromagnetic Technology and Engineering Key Laboratory of Nanchong City, China (Grant No. NCKL202005), and the Fundamental Research Funds of China West Normal University (Grant Nos. 22kE005, 23kc003, KCXTD2024-2).
    [1]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059Google Scholar

    [2]

    Bai W C, Li B H, Zhou B H, Zhao D, Lan Z J, Zhang H, Zhang H Z, Yuan L 2021 Solid State Commun. 324 114143Google Scholar

    [3]

    Berman O L, Boyko V S, Kezerashvili R Y, Kolesnikov A A, Lozovik Y E 2018 Phys. Lett. A 382 2075Google Scholar

    [4]

    周金苟, 杜桂强, 张亚文, 刘念华 2005 物理学报 54 3703Google Scholar

    Zhou J G, Du G Q, Zhang Y W, Liu N H 2005 Acta Phys. Sin. 54 3703Google Scholar

    [5]

    Moghadam F R, Bahari A 2017 J. Mod. Opt. 64 567Google Scholar

    [6]

    Wang H L, Li J F, Guo L, Ma D L, Yao J F, Li H P 2023 Photonics 10 333Google Scholar

    [7]

    Britto E C, Danasegaran S K, Xavier S C, Lalithakumari S 2023 J. Electron. Mater. 52 1177Google Scholar

    [8]

    张戎, 曹俊诚 2010 物理学报 59 3924Google Scholar

    Zhang R, Cao J C 2010 Acta Phys. Sin. 59 3924Google Scholar

    [9]

    Kumar A, Singh P, Thapa K B 2020 Opt. Quantum Electron. 52 423Google Scholar

    [10]

    Zhu Q F, Wang D Y, Zhang Y 2011 Optik 122 330Google Scholar

    [11]

    Chaves F S, Posada H V, Barón E P N 2020 Optik 200 163320Google Scholar

    [12]

    Centeno E, Cassagne D 2005 Opt. Lett. 30 2278Google Scholar

    [13]

    Singh B K, Bambole V, Tiwari S, Shukla K K, Pandey P C, Rastogi V 2021 Optik 240 166854Google Scholar

    [14]

    Zhu Z C, Liu B, Zhang F, Tang H L, Xu J, Gu M, Zhang C, Chen L, Liu J L, Ouyang X P 2021 Opt. Express 29 18646Google Scholar

    [15]

    Hojo H, Mase A 2004 J. Plasma Fusion Res. 80 89Google Scholar

    [16]

    Lo J, Sokoloff J, Callegari T, Boeuf J P 2010 Appl. Phys. Lett. 96 251501Google Scholar

    [17]

    Gregório J, Parsons S, Hopwood J 2017 Plasma Sources Sci. Technol. 26 02LT03Google Scholar

    [18]

    Biggs D R, Marcovati A, Cappelli M A 2019 J. Phys. D: Appl. Phys. 52 055202Google Scholar

    [19]

    Sakai O, Sakaguchi T, Tachibana K 2005 Appl. Phys. Lett. 87 241505Google Scholar

    [20]

    Hopwood J 2021 Plasma Sources Sci. Technol. 30 115013Google Scholar

    [21]

    Liu R B, Peng J, Lin L G, Qiu D Q, Liu Z, Lin Q 2023 Phys. Scr. 98 055611Google Scholar

    [22]

    Liang Y C, Liang Z Q, Liu Z, Jun P, Qiu D Q 2023 Opt. Express 31 776Google Scholar

    [23]

    Wang S, Liu S, Hou X H, Liu F C, Wu Z C, He Y F, Fan W L 2024 Phys. Lett. A 525 129850Google Scholar

    [24]

    Sun P P, Zhang R Y, Chen W Y, Braun P V, Eden J G 2019 Appl. Phys. Rev. 6 041406Google Scholar

    [25]

    刘少斌, 朱传喜, 袁乃昌 2005 物理学报 54 2804Google Scholar

    Liu S B, Zhu C X, Yuan N C 2005 Acta Phys. Sin. 54 2804Google Scholar

    [26]

    Kamboj G K, Yadav R P, Kaler R S 2021 Phys. Plasma 28 53509Google Scholar

    [27]

    Li J F, Zhou C, Yao J F, Yuan C X, Wang Y, Zhou Z X, Zhang J W, Kudryavtsev A A 2023 Plasma Sci. Technol. 25 35001Google Scholar

    [28]

    Parsons S G, Hopwood J 2017 IEEE Electron Device Lett. 38 1602Google Scholar

    [29]

    Kim H, Hopwood J 2020 J. Appl. Phys. 128 93302Google Scholar

    [30]

    Navarro R, Hopwood J 2022 J. Appl. Phys. 132 103301Google Scholar

    [31]

    Hopwood J 2023 IEEE Trans. Plasma Sci. 51 2165Google Scholar

    [32]

    Liao C J, Wang L, Gao J W, Ding D Z 2024 IEEE Trans. Plasma Sci. 52 204Google Scholar

    [33]

    Wang L, Bao H G, Ding D Z, Chen R S 2022 IEEE Trans. Plasma Sci. 50 525Google Scholar

    [34]

    Zhao P C, Liao C, Lin W B, Chang L, Fu H J 2011 Phys. Plasmas 18 102111Google Scholar

    [35]

    Datta S, Han J G, Kumar R, Sahu B B 2024 AIP Adv. 14 015046Google Scholar

    [36]

    Kim H, Hopwood J 2021 J. Appl. Phys. 129 033301Google Scholar

  • 图 1  等离子体光子晶体结构示意图 (a)三维模型; (b)二维模型

    Fig. 1.  Schematic diagram of plasma photonic crystal structure: (a) Three-dimensional model; (b) two-dimensional model.

    图 2  仿真结果的验证, 实验数据来源于文献[31]

    Fig. 2.  Verification of simulation results. The experimental data came from the Ref. [31].

    图 3  渐变结构的S参数

    Fig. 3.  The S-parameter of the gradient structure.

    图 4  入射功率为1 W时渐变结构中的电场分布 (a) 85.2 GHz; (b) 92.1 GHz; (c) 98.5 GHz; (d) 102.4 GHz; (e) 106 GHz

    Fig. 4.  Electric field distribution in gradient structure with incident power of 1 W: (a) 85.2 GHz; (b) 92.1 GHz; (c) 98.5 GHz; (d) 102.4 GHz; (e) 106 GHz.

    图 5  92.1 GHz频率下电磁波在不同入射功率和气体压强情况下的传输情况

    Fig. 5.  Electromagnetic wave transmission at 92.1 GHz under different incident power and gas pressure.

    图 6  t = 0.01 s时刻渐变结构缺陷空位处加入等离子体柱后不同频点下的电场分布 (a) 85.2 GHz; (b) 92.1 GHz; (c) 98.5 GHz; (d) 102.4 GHz; (e) 106 GHz

    Fig. 6.  Electric field distribution at different frequency points after the plasma column is added to the vacancy of the defect in the gradient structure at t = 0.01 s: (a) 85.2 GHz; (b) 92.1 GHz; (c) 98.5 GHz; (d) 102.4 GHz; (e) 106 GHz.

    图 7  t = 0.01 s 时刻渐变结构缺陷空位处加入等离子体柱后不同频点下的电子密度分布 (a) 85.2 GHz; (b) 92.1 GHz; (c) 98.5 GHz; (d) 102.4 GHz; (e) 106 GHz

    Fig. 7.  Electron density distribution at different frequency points after the plasma column is added to the vacancy of the defect in the gradient structure at t = 0.01 s: (a) 85.2 GHz; (b) 92.1 GHz; (c) 98.5 GHz; (d) 102.4 GHz; (e) 106 GHz.

    图 8  谐振频率下中心纵向截线上的电场分布

    Fig. 8.  Electric field distribution on central longitudinal transversal line at resonant frequency.

    图 9  谐振频率下的电磁波反射功率

    Fig. 9.  Electromagnetic wave reflection power at resonant frequency.

    图 10  谐振频率下的电磁波吸收功率

    Fig. 10.  Electromagnetic wave absorption power at resonant frequency.

    图 11  谐振频率下的电磁波传输功率

    Fig. 11.  Electromagnetic wave transmission power at resonant frequency.

    图 12  不同等离子体柱半径下电磁波的传输系数

    Fig. 12.  Transmission coefficient of electromagnetic wave under different plasma column radius.

  • [1]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059Google Scholar

    [2]

    Bai W C, Li B H, Zhou B H, Zhao D, Lan Z J, Zhang H, Zhang H Z, Yuan L 2021 Solid State Commun. 324 114143Google Scholar

    [3]

    Berman O L, Boyko V S, Kezerashvili R Y, Kolesnikov A A, Lozovik Y E 2018 Phys. Lett. A 382 2075Google Scholar

    [4]

    周金苟, 杜桂强, 张亚文, 刘念华 2005 物理学报 54 3703Google Scholar

    Zhou J G, Du G Q, Zhang Y W, Liu N H 2005 Acta Phys. Sin. 54 3703Google Scholar

    [5]

    Moghadam F R, Bahari A 2017 J. Mod. Opt. 64 567Google Scholar

    [6]

    Wang H L, Li J F, Guo L, Ma D L, Yao J F, Li H P 2023 Photonics 10 333Google Scholar

    [7]

    Britto E C, Danasegaran S K, Xavier S C, Lalithakumari S 2023 J. Electron. Mater. 52 1177Google Scholar

    [8]

    张戎, 曹俊诚 2010 物理学报 59 3924Google Scholar

    Zhang R, Cao J C 2010 Acta Phys. Sin. 59 3924Google Scholar

    [9]

    Kumar A, Singh P, Thapa K B 2020 Opt. Quantum Electron. 52 423Google Scholar

    [10]

    Zhu Q F, Wang D Y, Zhang Y 2011 Optik 122 330Google Scholar

    [11]

    Chaves F S, Posada H V, Barón E P N 2020 Optik 200 163320Google Scholar

    [12]

    Centeno E, Cassagne D 2005 Opt. Lett. 30 2278Google Scholar

    [13]

    Singh B K, Bambole V, Tiwari S, Shukla K K, Pandey P C, Rastogi V 2021 Optik 240 166854Google Scholar

    [14]

    Zhu Z C, Liu B, Zhang F, Tang H L, Xu J, Gu M, Zhang C, Chen L, Liu J L, Ouyang X P 2021 Opt. Express 29 18646Google Scholar

    [15]

    Hojo H, Mase A 2004 J. Plasma Fusion Res. 80 89Google Scholar

    [16]

    Lo J, Sokoloff J, Callegari T, Boeuf J P 2010 Appl. Phys. Lett. 96 251501Google Scholar

    [17]

    Gregório J, Parsons S, Hopwood J 2017 Plasma Sources Sci. Technol. 26 02LT03Google Scholar

    [18]

    Biggs D R, Marcovati A, Cappelli M A 2019 J. Phys. D: Appl. Phys. 52 055202Google Scholar

    [19]

    Sakai O, Sakaguchi T, Tachibana K 2005 Appl. Phys. Lett. 87 241505Google Scholar

    [20]

    Hopwood J 2021 Plasma Sources Sci. Technol. 30 115013Google Scholar

    [21]

    Liu R B, Peng J, Lin L G, Qiu D Q, Liu Z, Lin Q 2023 Phys. Scr. 98 055611Google Scholar

    [22]

    Liang Y C, Liang Z Q, Liu Z, Jun P, Qiu D Q 2023 Opt. Express 31 776Google Scholar

    [23]

    Wang S, Liu S, Hou X H, Liu F C, Wu Z C, He Y F, Fan W L 2024 Phys. Lett. A 525 129850Google Scholar

    [24]

    Sun P P, Zhang R Y, Chen W Y, Braun P V, Eden J G 2019 Appl. Phys. Rev. 6 041406Google Scholar

    [25]

    刘少斌, 朱传喜, 袁乃昌 2005 物理学报 54 2804Google Scholar

    Liu S B, Zhu C X, Yuan N C 2005 Acta Phys. Sin. 54 2804Google Scholar

    [26]

    Kamboj G K, Yadav R P, Kaler R S 2021 Phys. Plasma 28 53509Google Scholar

    [27]

    Li J F, Zhou C, Yao J F, Yuan C X, Wang Y, Zhou Z X, Zhang J W, Kudryavtsev A A 2023 Plasma Sci. Technol. 25 35001Google Scholar

    [28]

    Parsons S G, Hopwood J 2017 IEEE Electron Device Lett. 38 1602Google Scholar

    [29]

    Kim H, Hopwood J 2020 J. Appl. Phys. 128 93302Google Scholar

    [30]

    Navarro R, Hopwood J 2022 J. Appl. Phys. 132 103301Google Scholar

    [31]

    Hopwood J 2023 IEEE Trans. Plasma Sci. 51 2165Google Scholar

    [32]

    Liao C J, Wang L, Gao J W, Ding D Z 2024 IEEE Trans. Plasma Sci. 52 204Google Scholar

    [33]

    Wang L, Bao H G, Ding D Z, Chen R S 2022 IEEE Trans. Plasma Sci. 50 525Google Scholar

    [34]

    Zhao P C, Liao C, Lin W B, Chang L, Fu H J 2011 Phys. Plasmas 18 102111Google Scholar

    [35]

    Datta S, Han J G, Kumar R, Sahu B B 2024 AIP Adv. 14 015046Google Scholar

    [36]

    Kim H, Hopwood J 2021 J. Appl. Phys. 129 033301Google Scholar

  • [1] 舒盼盼, 赵朋程. 高功率微波介质窗气体侧击穿特性的粒子-蒙特卡罗碰撞模拟. 物理学报, 2024, 73(23): 235101. doi: 10.7498/aps.73.20241177
    [2] 孟令辉, 任洪波, 刘建晓. 高温等离子体中太赫兹波的传输特性. 物理学报, 2018, 67(17): 174101. doi: 10.7498/aps.67.20180647
    [3] 马昊军, 王国林, 罗杰, 刘丽萍, 潘德贤, 张军, 邢英丽, 唐飞. S-Ka频段电磁波在等离子体中传输特性的实验研究. 物理学报, 2018, 67(2): 025201. doi: 10.7498/aps.67.20170845
    [4] 成玉国, 程谋森, 王墨戈, 李小康. 磁场对螺旋波等离子体波和能量吸收影响的数值研究. 物理学报, 2014, 63(3): 035203. doi: 10.7498/aps.63.035203
    [5] 刘玉峰, 丁艳军, 彭志敏, 黄宇, 杜艳君. 激光诱导击穿空气等离子体时间分辨特性的光谱研究. 物理学报, 2014, 63(20): 205205. doi: 10.7498/aps.63.205205
    [6] 陈文波, 龚学余, 路兴强, 冯军, 廖湘柏, 黄国玉, 邓贤君. 基于动理论模型的一维等离子体电磁波传输特性分析. 物理学报, 2014, 63(21): 214101. doi: 10.7498/aps.63.214101
    [7] 郑灵, 赵青, 罗先刚, 马平, 刘述章, 黄成, 邢晓俊, 张春艳, 陈旭霖. 等离子体中电磁波传输特性理论与实验研究. 物理学报, 2012, 61(15): 155203. doi: 10.7498/aps.61.155203
    [8] 杨涓, 龙春伟, 陈茂林, 许映桥, 谭小群. 外加磁场微波等离子体喷流对平面电磁波衰减的实验研究. 物理学报, 2009, 58(7): 4793-4798. doi: 10.7498/aps.58.4793
    [9] 周磊, 唐昌建. 不均匀等离子体中电磁波与Langmuir波的相互作用. 物理学报, 2009, 58(12): 8254-8259. doi: 10.7498/aps.58.8254
    [10] 张 民, 吴振森. 脉冲波在空间等离子体介质中传播的矩分析及其应用. 物理学报, 2007, 56(10): 5937-5944. doi: 10.7498/aps.56.5937
    [11] 杨 涓, 朱 冰, 毛根旺, 许映乔, 刘俊平. 真空中不同极化电磁波在微波等离子体喷流中的衰减特性实验研究. 物理学报, 2007, 56(12): 7120-7126. doi: 10.7498/aps.56.7120
    [12] 王 彬, 谢文楷. 等离子体加载耦合腔慢波结构色散分析. 物理学报, 2007, 56(12): 7138-7146. doi: 10.7498/aps.56.7138
    [13] 朱 冰, 杨 涓, 黄雪刚, 毛根旺, 刘俊平. 真空环境中等离子体喷流对反射电磁波衰减的实验研究. 物理学报, 2006, 55(5): 2352-2356. doi: 10.7498/aps.55.2352
    [14] 杨宏伟, 陈如山, 张 云. 等离子体的SO-FDTD算法和对电磁波反射系数的计算分析. 物理学报, 2006, 55(7): 3464-3469. doi: 10.7498/aps.55.3464
    [15] 杨 涓, 朱良明, 苏维仪, 毛根旺. 电磁波在磁化等离子体表面的功率反射系数计算研究. 物理学报, 2005, 54(7): 3236-3240. doi: 10.7498/aps.54.3236
    [16] 宋法伦, 曹金祥, 王 舸. 弱电离等离子体对电磁波吸收的物理模型和数值求解. 物理学报, 2005, 54(2): 807-811. doi: 10.7498/aps.54.807
    [17] 宋法伦, 曹金祥, 王舸. 电磁波在径向非均匀球对称等离子体中的衰减. 物理学报, 2004, 53(4): 1110-1115. doi: 10.7498/aps.53.1110
    [18] 苏纬仪, 杨 涓, 魏 昆, 毛根旺, 何洪庆. 金属平板前等离子体的电磁波功率反射系数计算分析. 物理学报, 2003, 52(12): 3102-3107. doi: 10.7498/aps.52.3102
    [19] 唐德礼, 孙爱萍, 邱孝明. 均匀磁化等离子体与雷达波相互作用的数值分析. 物理学报, 2002, 51(8): 1724-1729. doi: 10.7498/aps.51.1724
    [20] 刘明海, 胡希伟, 江中和, 刘克富, 辜承林, 潘垣. 电磁波在大气层人造等离子体中的衰减特性. 物理学报, 2002, 51(6): 1317-1320. doi: 10.7498/aps.51.1317
计量
  • 文章访问数:  964
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-14
  • 修回日期:  2024-11-08
  • 上网日期:  2024-11-19
  • 刊出日期:  2024-12-20

/

返回文章
返回