搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

羽流区磁场对霍尔推力器性能影响的二维模拟研究

杨三祥 赵以德 代鹏 李建鹏 耿海 杨俊泰 贾艳辉 郭宁

引用本文:
Citation:

羽流区磁场对霍尔推力器性能影响的二维模拟研究

杨三祥, 赵以德, 代鹏, 李建鹏, 耿海, 杨俊泰, 贾艳辉, 郭宁

Two-dimensional simulation of the influence of plume magnetic field on the performance of hall thrusters

Yang Sanxiang, Zhao Yide, Dai Peng, Li Jianpeng, Geng Hai, Yang JunTai, Jia Yanhui, GuoNing
PDF
导出引用
  • 磁场作为霍尔推力器的关键设计参数之一,其通过直接影响电子输运、中性原子电离、等离子体分布等微观行为,间接影响推力器的宏观性能。目前,针对霍尔推力器磁场影响的研究更多的是关注放电通道内磁场大小以及分布的影响,而对羽流区磁场的影响研究相对较少。基于此,本文利用二维粒子-流体混合模型研究了霍尔推力器羽流区的轴向磁场分布对推力器性能的影响。研究结果表明,在放电通道内轴向磁场分布不变的情况下,改变羽流区的轴向磁场梯度对推力有显著的影响。放电通道中的电势降随着羽流区轴向磁场梯度的减小而减小,羽流区电场以及放电通道中的离子数密度峰值则随着羽流区轴向磁场梯度的减小而增加。增加羽流区的磁感应强度,有助于推力器性能的提升。更明确的说,羽流区的磁场梯度存在一个临界值,当羽流区轴向磁场梯度大于临界值时,推力随羽流区轴向磁场梯度的减小而增加。当羽流区轴向磁场梯度小于临界值时,推力随羽流区轴向磁场梯度的减小而轻微的减小。通过对不同羽流区磁场分布下的等离子体电势、电场、离子数密度,以及电离率分布的比较表明,羽流区磁场通过影响电子迁移率改变电场的分布,而电场分布的改变则会对推力产生影响。本文的研究结果将对霍尔推力器性能优化,以及磁场设计提供理论支撑。
    As one of the key design parameters of Hall thruster, magnetic field indirectly affects the macroscopic performance of the thruster by directly affecting electron transport, neutral atom ionization, plasma distribution and other microscopic behaviors. At present, the study on the influence of Hall thruster magnetic field focuses more on the size and distribution of the magnetic field in the discharge channel, while the little research on the influence of the plume magnetic field on the thruster. Based on this, the effect of plume region axial magnetic field profile on the performance of Hall thruster is studied by using two-dimensional hybrid simulation. The research results show that the axial magnetic field gradient in the plume region has a significant influence on the thruster performance, when the magnetic field characteristics (magnetic field topology and magnetic field intensity) in the discharge channel remain unchanged. The potential drop in the discharge channel decreases with the axial magnetic field gradient in the plume region decreasing. However,the electric field in the plume region and the peak ion number density in the discharge channel increase with the axial magnetic field gradient in the plume region decreasing. Overall, the performance of the thruster improvement by increasing the magnetic field strength in the plume region. More specifically, there is a critical value of axial magnetic field gradient in the plume region. When the axial magnetic field gradient in the plume region is greater than the critical value, the thrust increases with the axial magnetic field gradient decreasing. When the axial magnetic field gradient of the plume region is less than the critical value, the thrust decreases slightly with the axial magnetic field gradient decreasing. The comparison of plasma potential, electric field, ion number density and ionization rate distribution under different magnetic field distribution in the plume region shows that the effect of plume magnetic field on thrust is to affect the distribution of electric field in space by influencing the mobility of electrons, thus the thrust will change due to electric field. The results of this paper will provide theoretical support for the improvement performance of hall thrusters and the design of magnetic fields.
  • [1]

    Mazouffre S 2016 Plasma Sources Sci. Technol. 25 033002

    [2]

    Li W B, Ding Y J, Wei L Q, Han L, Yu D R 2017 Vacuum 136 77-81

    [3]

    Taccogna F, Minelli P, Capitelli M, Longo S, 2012 American Institute of Physics 1501 1390

    [4]

    Raitses Y, Fisch N J 2001 Phys. Plasmas 8 2579

    [5]

    Shitrit S, Ashkenazy J, Appelbaum G, Warshavsky A 2008 IEEE Trans. Plasma Sci. 36 2025-2033

    [6]

    Gawron D, Mazouffre S, Sadeghi N, Héron A 2008 Plasma Sources Sci. Technol.17 025001

    [7]

    Shmelev A V, Lovtsov A S 2012 Technical Physics Letters 38 544-547

    [8]

    Hofer R R, Geoibel D M, Mikellides I G, Katz I, 2014 J. Appl. Phys. 115 043304

    [9]

    Li H, Fan H T, Liu X Y, Ding M H, Ding Y J, Wei L Q, Yu D R, Wang X G 2019 Vacuum 162 78-84

    [10]

    Garrigues L, Hagelarr G J M, Bareilles J, Boniface C, Boeuf J P 2003 Phys. Plasmas 10 4886-4892

    [11]

    Sommier E, Allis M K, Cappelli M A 2005 The 29th International Electric Propulsion Conference, October 31-November 4, Princeton University, IEPC-2005-189

    [12]

    Ahedo E, Antón A, Garmendia I,Caro I 2007 The 30th International Electric Propulsion Conference, September 17-20, Florence, Italy, IEPC-2007-067

    [13]

    Boniface C, Garrigues L, Hagelaar G J M, Boefu J P 2006 Appl. Phys.Lett. 89 161503

    [14]

    Hara K, Sekerak M J, Boyd I D, Gallimore A D 2014 J. Appl. Phys. 115 203304;

    [15]

    Perales-Dĺaz J, Domĺnguez-Vázquez Fajardo P, Ahedo E, Faraji F, Reza M, Andreussi T 2022 J. Appl. Phys. 131 103302

    [16]

    Jiang Y W, Tang H B, Ren J X, Li M, Cao J B 2018 J. Phys. D: Appl. Phys. 51 1627

    [17]

    Liu J W, Li H, Hu Y L, Liu X Y, Ding Y J, Wei L Q, Yu D R, Wang X G 2019 Contrib. Plasma Phys.e201800001

    [18]

    Yang S X, Wang Q N, Gao J, Jia Y H, Geng H, Guo N, Chen X W, Yuan X L, Zhang P 2022 Acta Phys. Sin. 71 105201

    [19]

    Keidar M, Boyd I D 1999 J. Appl.Phys. 86 4786

    [20]

    Mikellides I G, Katz I, Mandell M J, Snyder J S 2001 37th AIAA/ASME/SAE/AHS/ASEE Joint Propulsion Conference & Exhibit, Salt Lake City, Utah, July 8-11, AIAA-2001-3505

    [21]

    Boyd I D, Yim J M 2004 J.Appl.Phys. 95 4575

    [22]

    Raitses Y, Gaysoso J C, Merino E, Fisch N J 2010 46th AIAA/ASME/SAE/AHS/ASEE Joint Propulsion Conference & Exhibit, Nashville, TN, July 25-28, AIAA-2010-6621

    [23]

    Hu P, Liu H, Mao W, Yu D R, Gao Y Y 2015 Phys. Plasmas 22 103502

    [24]

    Kim H, Lim Y, Choe W, Park S, Seon J 2015 Appl. Phys. Lett. 106 154103

    [25]

    Singh S, Malik H K 2023 J.Astrophys. Astr. 44 3

    [26]

    Hofer R R, Gallimore A D 2006 J. Propul. Power 22, 721

    [27]

    Hofer R R, Gallimore A D 2006 J. Propul. Power 22, 732-740

    [28]

    Henaux C, Vilamot R, Garrigues L, Harribey D 2012 20th International Conferences on Electrical Machines, Marseille, France, September2-5, 2533-2537

    [29]

    Domonkos M T, Gallimore A D, Marrese C M, Haas J M 2000 J. Propul. Power 16 91-98

    [30]

    Liang R, Gallimore A D 2011 49th AIAA Aerospace Sciences Meeting, Kissimmee, Florida, January 4-7, AIAA-2011-1016

    [31]

    Adam J C, Héron A, Laval G 2004 Phys. Plasma 11 295

    [32]

    Lafleur T, Martorelli R, Chabert P, Bourdon A 2018 Phys. Plasma 25 061202

    [33]

    Coche P, Garrigues L 2014 Phys. Plasmas 21 023503

    [34]

    Chen L, Kan Z C,Gao W F, et al 2024 Chin. Phys. B 33 015203

    [35]

    Yu D R, Qing S W, Liu H, Li H 2011 Contrib. Plasma Phys. 51 955

    [36]

    Yu D R, Song M, Liu H, Ding Y J, Li H 2012 Phys. Plasmas 19 033503

    [37]

    Szabo J, Warner N, Martinez-Sanchez M, Batishchev O 2014 J. Propuls. Power 30 197

    [38]

    Taccogna F, Minelli P 2018 Phys. Plasmas 25 061208

    [39]

    Garrigues L, Hagelarr G J M, Boniface C et al 2004 Appl. Phys. Lett 22 85

    [40]

    Kawashima R, Hara K, Komurasaki K 2018 Plasma Sources Sci. Technol. 27 035010

    [41]

    Katz I, Jongeward G, Davis V, et al 2001 37th AIAA/ASME/SAE/AHS/ASEE Joint Propulsion Conference & Exhibit, Salt Lake City, Utah, July 8-11, AIAA-2001-3355

    [42]

    Kawashima R, Komurasaki K, Schönherr T Koizumi H 2016 54th AIAA Aerospace Sciences Meeting, San Diego,California, USA, January 4-8, AIAA-2016-2159

    [43]

    Kawashima R, Wang Z X, Chamarthi A S 2018 55th AIAA Aerospace Sciences Meeting, Kissimmee, Florida, January 8-12, 2018, AIAA-2018-0175

    [44]

    Hofer R R, Mikellides I G, Katz I, Goebel D M 2007 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Con, Honolulu, Hawaii, April 23-26, AIAA-2007-5267.

    [45]

    Manzella, D. H., Jankovsky, R., Elliott, F., Mikellides, I., Jongeward, G., and Allen, D. 2001 27th International Electric Propulsion Conference, IEPC-2001-044.

    [46]

    Andreussi T, Giannetti V, Leporini A, Saravia M M, Andrenucci M 2018 Plasma Phys. Control. Fusion. 60 014015.

    [47]

    Fujita D, Kawashima R, Ito Y, Akagi S, Suzuki J, Schonherr T, Koizumi H, Komurasaki K 2014 Vacuum 10 159-164.

  • [1] 付瑜亮, 张思远, 杨谨远, 孙安邦, 王亚楠. 微波离子推力器中磁场发散区电子加热模式研究. 物理学报, doi: 10.7498/aps.73.20240017
    [2] 彭腾, 王辉耀, 赵茜, 刘俊宏, 汪波, 王晶晶, 周银琼, 张可怡, 杨俊, 熊祖洪. 电子注入层迁移率对Rubrene/C60基发光二极管半带隙开启电压的调控. 物理学报, doi: 10.7498/aps.73.20240864
    [3] 杨三祥, 郭宁, 贾艳辉, 耿海, 高俊, 刘家涛, 刘士永, 杨盛林. 霍尔推力器中呼吸振荡激发机理及影响因素. 物理学报, doi: 10.7498/aps.72.20230009
    [4] 杨三祥, 王倩楠, 高俊, 贾艳辉, 耿海, 郭宁, 陈新伟, 袁兴龙, 张鹏. 径向磁场对霍尔推力器性能影响的数值模拟研究. 物理学报, doi: 10.7498/aps.71.20212386
    [5] 刘旭阳, 张贺秋, 李冰冰, 刘俊, 薛东阳, 王恒山, 梁红伟, 夏晓川. AlGaN/GaN高电子迁移率晶体管温度传感器特性. 物理学报, doi: 10.7498/aps.69.20190640
    [6] 于博, 张岩, 贺伟国, 杭观荣, 康小录, 赵青. 超声波电喷推力器羽流中和特性研究. 物理学报, doi: 10.7498/aps.67.20171972
    [7] 王文钊, 胡碧涛, 郑皓, 屠小青, 高朋林, 闫松, 郭文传, 闫海洋. 一种可用于极化3He实验的新型磁场系统. 物理学报, doi: 10.7498/aps.67.20180571
    [8] 张锐, 张代贤, 张帆, 何振, 吴建军. 脉冲等离子体推力器羽流沉积薄膜的结构与光学性质研究. 物理学报, doi: 10.7498/aps.62.025207
    [9] 于遥, 张晶思, 陈黛黛, 郭睿倩, 谷至华. PECVD分层结构对提高氢化非晶硅TFT迁移率的影响. 物理学报, doi: 10.7498/aps.62.138501
    [10] 卿绍伟, 鄂鹏, 段萍. 壁面二次电子发射对霍尔推力器放电通道绝缘壁面双鞘特性的影响. 物理学报, doi: 10.7498/aps.62.055202
    [11] 杨福军, 班士良. 纤锌矿AlGaN/AlN/GaN异质结构中光学声子散射影响的电子迁移率. 物理学报, doi: 10.7498/aps.61.087201
    [12] 卿绍伟, 鄂鹏, 段萍. 电子温度各向异性对霍尔推力器中等离子体与壁面相互作用的影响. 物理学报, doi: 10.7498/aps.61.205202
    [13] 李斌, 刘红侠, 袁博, 李劲, 卢凤铭. 应变Si/Si1-xGex n型金属氧化物半导体场效应晶体管反型层中的电子迁移率模型. 物理学报, doi: 10.7498/aps.60.017202
    [14] 王晓艳, 张鹤鸣, 宋建军, 马建立, 王冠宇, 安久华. 应变Si/(001)Si1-xGex电子迁移率. 物理学报, doi: 10.7498/aps.60.077205
    [15] 于达仁, 卿绍伟, 王晓钢, 丁永杰, 段萍. 电子温度各向异性对霍尔推力器BN绝缘壁面鞘层特性的影响. 物理学报, doi: 10.7498/aps.60.025204
    [16] 邓立赟, 蓝红梅, 刘悦. 霍尔推力器磁场位形及其优化的数值研究. 物理学报, doi: 10.7498/aps.60.025213
    [17] 鄂鹏, 段萍, 魏立秋, 白德宇, 江滨浩, 徐殿国. 真空背压对霍尔推力器放电特性影响的实验研究. 物理学报, doi: 10.7498/aps.59.8676
    [18] 鄂鹏, 段萍, 江滨浩, 刘辉, 魏立秋, 徐殿国. 磁场梯度对Hall推力器放电特性影响的实验研究. 物理学报, doi: 10.7498/aps.59.7182
    [19] 鄂鹏, 韩轲, 武志文, 于达仁. 磁场强度对霍尔推力器放电特性影响的实验研究. 物理学报, doi: 10.7498/aps.58.2535
    [20] 郑中山, 刘忠立, 张国强, 李 宁, 范 楷, 张恩霞, 易万兵, 陈 猛, 王 曦. 埋氧层注氮工艺对部分耗尽SOI nMOSFET特性的影响. 物理学报, doi: 10.7498/aps.54.348
计量
  • 文章访问数:  25
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2024-11-20

/

返回文章
返回