搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微波离子推力器中磁场发散区电子加热模式研究

付瑜亮 张思远 杨谨远 孙安邦 王亚楠

引用本文:
Citation:

微波离子推力器中磁场发散区电子加热模式研究

付瑜亮, 张思远, 杨谨远, 孙安邦, 王亚楠

Electron heating mode in magnetic field diffusion region of microwave discharge ion thruster

Fu Yu-Liang, Zhang Si-Yuan, Yang Jin-Yuan, Sun An-Bang, Wang Ya-Nan
PDF
HTML
导出引用
  • 在微波离子推力器的磁场结构设计中, 一般认为增大磁镜区的面积能够约束更多电子, 有利于提高能量利用率; 减小发散区面积能够减少电子在壁面的损失, 有利于降低放电损耗. 随着一体化仿真研究深入, 发现利用Child-Langmuir鞘层的特性可约束电子, 使其在鞘层与磁镜间往复运动获能. 对此, 本文设计了适用于1 cm磁阵列微波离子推力器的磁场结构, 并对其初始放电和束流引出过程进行了一体化仿真, 对比阐明了电子在磁场发散区受Child-Langmuir鞘层、天线表面鞘层和磁镜共同约束下的获能模式. 该获能模式可提升磁场发散区的电子温度, 促进电离, 提升栅极前等离子体密度, 进而提升束流密度. 仿真结果表明, 在氙气流量0.3 sccm (1 sccm= 1 mL/min), 微波功率为1 W, 栅极电压$ {\varphi }_{{\mathrm{s}}{\mathrm{c}}}/{\varphi }_{{\mathrm{a}}{\mathrm{c}}} $ = 300 V/–50 V条件下, 磁阵列微波离子推力器的电流密度较2 cm微波离子推力器提升57.9%. 本文从理论上对磁场发散区电子加热模式进行了验证, 研究结果将为微波离子推力器优化设计提供理论依据, 促进微波离子推力器性能提升.
    In magnetic field design principle of microwave discharge ion thruster, it is universally received that enlarging the magnetic mirror region can confine more electrons to acquire better energy utilization rate, while reducing the magnetic field diffusion region can prevent electrons from losing at wall to reduce the discharge loss. However, recently the integrated simulation proposes a hypothesis that electrons can also be heated in the magnetic field diffusion region when the Child-Langmuir sheath is considered as a constraint condition for electrons. Therefore, herein a magnetic field structure for the magnet array microwave discharge ion thruster is designed to verify the hypothesis, in which the magnetic field diffusion region is located near the screen grid. Then, an integrated simulation is conducted for studying the initial discharge and ion beam extraction stages of the thruster. The simulation results show that in the magnetic field diffusion region, the electron temperature is 4–8 eV when the grid system voltage is not applied, while the electron temperature is 4–12 eV when the the grid system voltage is applied. And the plasma density in the latter case has one order of magnitude higher than that in the former case. It means that electrons are obviously heated in the magnetic field diffusion region when they are confined among the Child-Langmuir sheath, the plasma sheath at antenna surface, and magnetic mirror. This electron heating mode produces more high-energy electrons outside the magnetic mirror region to generate plasma in front of the grid system, which can significantly increase the plasma density and ion beam current density. The result shows that under the conditions of 0.3 sccm (1 sccm = 1 mL/min) xenon gas flow, 1 W input microwave power, 300 V screen grid voltage and –50 V acceleration grid voltage, the ion beam current and its density are 0.47 mA and 0.60 mA/cm2 for the magnet array microwave discharge ion thruster, while the ion beam current and its density are 1.2 mA and 0.38 mA/cm2 for the 2-cm microwave discharge ion thruster. The ion beam current density increases by 57.9%. Through the integrated simulation, a new electron heating mode in the magnetic field diffusion region is proved theoretically, which provides a theoretical basis for the magnetic field structure optimization of microwave discharge ion thruster.
      通信作者: 孙安邦, anbang.sun@xjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52307183)、中央高校基本科研业务费(批准号: xtr052023003)和电工材料电气绝缘全国重点实验室基金(批准号: EIPE23114)资助的课题.
      Corresponding author: Sun An-Bang, anbang.sun@xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52307183), the Fundamental Research Funds for the Central Universities, China (Grant No. xtr052023003), and the State Key Laboratory of Electrical Insulation and Power Equipment, China (Grant No. EIPE23114).
    [1]

    杨涓, 牟浩, 耿海, 吴先明 2023 推进技术 44 78Google Scholar

    Yang J, Mou H, Geng H, Wu X M 2023 J. Propuls. Tech. 44 78Google Scholar

    [2]

    Watanabe S, Tsuda Y, Yoshikawa M, Tanaka S, Saiki T, Nakazawa S 2017 Space Sci. Rev. 208 3Google Scholar

    [3]

    Koizumi H, Kawahara H, Yaginuma K, et al. 2016 Trans. JSASS Aerospace Tech. Jpn. 14 30Google Scholar

    [4]

    韩罗峰, 朱康武, 黄文斌, 于学文, 张辰乙, 鲁超, 刘通, 李航, 黄静 2022 真空与低温 28 98Google Scholar

    Han L F, Zhu K W, Huang W B, Yu X W, Zhang C Y, Lu C, Liu T, Li H, Huang J 2022 Vacuum Cry. 28 98Google Scholar

    [5]

    于达仁, 乔磊, 蒋文嘉, 刘辉 2020 推进技术 41 1Google Scholar

    Yu D R, Qiao L, Jiang W J, Liu H 2020 J. Propuls. Tech. 41 1Google Scholar

    [6]

    Tsukizaki R, Ise T, Koizumi H, Togo H, Nishiyama K, Kuninaka H 2014 J. Propul. Power 30 5Google Scholar

    [7]

    夏旭, 杨涓, 金逸舟, 杭观荣, 付瑜亮, 胡展 2019 物理学报 68 235202Google Scholar

    Xia X, Yang J, Jin Y Z, Hang G R, Fu Y L, Hu Z 2019 Acta Phys. Sin. 68 235202Google Scholar

    [8]

    Fu S H, Ding Z F, Ke Y J, Tian L C 2020 IEEE Trans. Plasma Sci. 48 3Google Scholar

    [9]

    Ke Y J, Sun X F, Zhao Y, Chen X K 2018 Prog. Electromagn. Res. Lett. 75 91Google Scholar

    [10]

    Dey I, Toyoda Y, Yamamoto N, Nakashima H 2015 Rev. Sci. Instrum. 86 1868Google Scholar

    [11]

    Takao Y, Koizumi H, Komurasaki K, Eriguchi K, Ono K 2014 Plasma Sources Sci. Technol. 23 064004Google Scholar

    [12]

    Tani Y, Yamashita Y, Tsukizaki R, Nishiyama K, Kuninaka H 2020 Acta Astronau. 176 77Google Scholar

    [13]

    Ataka Y, Nakagawa Y, Koizumi H, Komurasaki K 2021 Acta Astronau. 187 133Google Scholar

    [14]

    Xia X, Yang J, Jin Y Z, Hang G R, Fu Y L, Hu Z 2020 Vacuum 179 109517Google Scholar

    [15]

    Mou H, Jin Y Z, Yang J, Xia X, Fu Y L 2022 Chin. Phys. B 31 075202Google Scholar

    [16]

    Coral G, Tsukizaki, Nishiyama K, Kuninaka H 2018 Plasma Sources Sci. Technol. 27 095015Google Scholar

    [17]

    Koizumi H, Komurasaki K, Aoyama J, Yamaguchi K 2018 J. Propul. Power 34 4Google Scholar

    [18]

    Motoki T, Takasaki D, Koizumi H, Ataka Y, Komurasaki K, Takao Y 2022 Acta Astronau. 196 231Google Scholar

    [19]

    夏旭 2022 博士学位论文(西安: 西北工业大学)

    Xia X 2022 Ph. D. Dissertation (Xi’an: Northwestern Polytechnical University

    [20]

    付瑜亮, 杨涓, 夏旭, 孙安邦 2023 物理学报 72 175204Google Scholar

    Fu Y L, Yang J, Xia X, Sun A B 2023 Acta Phys. Sin. 72 175204Google Scholar

    [21]

    付瑜亮 2022 博士学位论文(西安: 西北工业大学)

    Fu Y L 2022 Ph. D. Dissertation (Xi’an: Northwestern Polytechnical University

    [22]

    Fu Y L, Yang J, Mou H, Tan R W, Xia X, Gao Z Y 2022 Comput. Phys. Commun. 278 8395Google Scholar

  • 图 1  微型微波离子推力器磁场结构示意图

    Fig. 1.  Magnetic field diagram of miniature microwave discharge ion thruster.

    图 2  计算域和边界条件

    Fig. 2.  Calculation region and boundary condition setting.

    图 3  磁阵列微波离子推力器结构示意图

    Fig. 3.  Magnetic field diagram of magnet array microwave discharge ion thruster.

    图 4  放电阶段电子和离子密度分布

    Fig. 4.  Electron and ion density distribution in discharge stage.

    图 5  栅极电压$ {\varphi }_{{\mathrm{s}}{\mathrm{c}}}/{\varphi }_{{\mathrm{a}}{\mathrm{c}}} $ = 300 V/–50 V时电子和离子密度分布

    Fig. 5.  Electron and ion density distribution at $ {\varphi }_{{\mathrm{s}}{\mathrm{c}}}/{\varphi }_{{\mathrm{a}}{\mathrm{c}}} $ = 300 V/–50 V

    图 6  栅极电压$ {\varphi }_{{\mathrm{s}}{\mathrm{c}}}/{\varphi }_{{\mathrm{a}}{\mathrm{c}}} $ = 500 V/–100 V时电子和离子密度分布

    Fig. 6.  Electron and ion density distribution at $ {\varphi }_{{\mathrm{s}}{\mathrm{c}}}/{\varphi }_{{\mathrm{a}}{\mathrm{c}}} $ = 500 V/–100 V.

    图 7  电子温度分布对比

    Fig. 7.  Comparison of electron temperature distributions.

    图 8  磁场发散区的电子运动示意图

    Fig. 8.  Electron motion diagram in magnetic field diffusion region.

    图 9  栅极电压$ {\varphi }_{{\mathrm{s}}{\mathrm{c}}}/{\varphi }_{{\mathrm{a}}{\mathrm{c}}} $ = 300 V/–50 V时引出束流曲线

    Fig. 9.  Current curve of ion beam at $ {\varphi }_{{\mathrm{s}}{\mathrm{c}}}/{\varphi }_{{\mathrm{a}}{\mathrm{c}}} $ = 300 V/–50 V.

  • [1]

    杨涓, 牟浩, 耿海, 吴先明 2023 推进技术 44 78Google Scholar

    Yang J, Mou H, Geng H, Wu X M 2023 J. Propuls. Tech. 44 78Google Scholar

    [2]

    Watanabe S, Tsuda Y, Yoshikawa M, Tanaka S, Saiki T, Nakazawa S 2017 Space Sci. Rev. 208 3Google Scholar

    [3]

    Koizumi H, Kawahara H, Yaginuma K, et al. 2016 Trans. JSASS Aerospace Tech. Jpn. 14 30Google Scholar

    [4]

    韩罗峰, 朱康武, 黄文斌, 于学文, 张辰乙, 鲁超, 刘通, 李航, 黄静 2022 真空与低温 28 98Google Scholar

    Han L F, Zhu K W, Huang W B, Yu X W, Zhang C Y, Lu C, Liu T, Li H, Huang J 2022 Vacuum Cry. 28 98Google Scholar

    [5]

    于达仁, 乔磊, 蒋文嘉, 刘辉 2020 推进技术 41 1Google Scholar

    Yu D R, Qiao L, Jiang W J, Liu H 2020 J. Propuls. Tech. 41 1Google Scholar

    [6]

    Tsukizaki R, Ise T, Koizumi H, Togo H, Nishiyama K, Kuninaka H 2014 J. Propul. Power 30 5Google Scholar

    [7]

    夏旭, 杨涓, 金逸舟, 杭观荣, 付瑜亮, 胡展 2019 物理学报 68 235202Google Scholar

    Xia X, Yang J, Jin Y Z, Hang G R, Fu Y L, Hu Z 2019 Acta Phys. Sin. 68 235202Google Scholar

    [8]

    Fu S H, Ding Z F, Ke Y J, Tian L C 2020 IEEE Trans. Plasma Sci. 48 3Google Scholar

    [9]

    Ke Y J, Sun X F, Zhao Y, Chen X K 2018 Prog. Electromagn. Res. Lett. 75 91Google Scholar

    [10]

    Dey I, Toyoda Y, Yamamoto N, Nakashima H 2015 Rev. Sci. Instrum. 86 1868Google Scholar

    [11]

    Takao Y, Koizumi H, Komurasaki K, Eriguchi K, Ono K 2014 Plasma Sources Sci. Technol. 23 064004Google Scholar

    [12]

    Tani Y, Yamashita Y, Tsukizaki R, Nishiyama K, Kuninaka H 2020 Acta Astronau. 176 77Google Scholar

    [13]

    Ataka Y, Nakagawa Y, Koizumi H, Komurasaki K 2021 Acta Astronau. 187 133Google Scholar

    [14]

    Xia X, Yang J, Jin Y Z, Hang G R, Fu Y L, Hu Z 2020 Vacuum 179 109517Google Scholar

    [15]

    Mou H, Jin Y Z, Yang J, Xia X, Fu Y L 2022 Chin. Phys. B 31 075202Google Scholar

    [16]

    Coral G, Tsukizaki, Nishiyama K, Kuninaka H 2018 Plasma Sources Sci. Technol. 27 095015Google Scholar

    [17]

    Koizumi H, Komurasaki K, Aoyama J, Yamaguchi K 2018 J. Propul. Power 34 4Google Scholar

    [18]

    Motoki T, Takasaki D, Koizumi H, Ataka Y, Komurasaki K, Takao Y 2022 Acta Astronau. 196 231Google Scholar

    [19]

    夏旭 2022 博士学位论文(西安: 西北工业大学)

    Xia X 2022 Ph. D. Dissertation (Xi’an: Northwestern Polytechnical University

    [20]

    付瑜亮, 杨涓, 夏旭, 孙安邦 2023 物理学报 72 175204Google Scholar

    Fu Y L, Yang J, Xia X, Sun A B 2023 Acta Phys. Sin. 72 175204Google Scholar

    [21]

    付瑜亮 2022 博士学位论文(西安: 西北工业大学)

    Fu Y L 2022 Ph. D. Dissertation (Xi’an: Northwestern Polytechnical University

    [22]

    Fu Y L, Yang J, Mou H, Tan R W, Xia X, Gao Z Y 2022 Comput. Phys. Commun. 278 8395Google Scholar

  • [1] 付瑜亮, 张思远, 孙安邦, 马祖福, 王亚楠. 磁阵列微波放电中和器的电子引出机制研究. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20240273
    [2] 谈人玮, 杨涓, 耿海, 吴先明, 牟浩. 氮气工质10厘米ECRIT中和器实验研究. 物理学报, 2023, 72(4): 045202. doi: 10.7498/aps.72.20221951
    [3] 付瑜亮, 杨涓, 夏旭, 孙安邦. 放电室长度对电子回旋共振离子推力器性能的影响机理. 物理学报, 2023, 72(17): 175204. doi: 10.7498/aps.72.20230719
    [4] 武文斌, 彭士香, 张艾霖, 周海京, 马腾昊, 蒋耀湘, 李凯, 崔步坚, 郭之虞, 陈佳洱. 微型电子回旋共振离子源的全局模型. 物理学报, 2022, 71(14): 145204. doi: 10.7498/aps.71.20212250
    [5] 李建鹏, 靳伍银, 赵以德. 加速电压和阳极流率对离子推力器性能的影响. 物理学报, 2022, 71(1): 015202. doi: 10.7498/aps.71.20211316
    [6] 李建鹏, 靳伍银, 赵以德. 多模式离子推力器输入参数设计及工作特性研究. 物理学报, 2022, 71(7): 075203. doi: 10.7498/aps.71.20212045
    [7] 李建鹏, 赵以德, 靳伍银, 张兴民, 李娟, 王彦龙. 多模式离子推力器放电室和栅极设计及其性能实验研究. 物理学报, 2022, 71(19): 195203. doi: 10.7498/aps.71.20220720
    [8] 夏旭, 杨涓, 付瑜亮, 吴先明, 耿海, 胡展. 2 cm电子回旋共振离子推力器离子源中磁场对等离子体特性与壁面电流影响的数值模拟. 物理学报, 2021, 70(7): 075204. doi: 10.7498/aps.70.20201667
    [9] 夏旭, 杨涓, 金逸舟, 杭观荣, 付瑜亮, 胡展. 磁路和天线位置对2 cm电子回旋共振离子推力器性能影响的实验研究. 物理学报, 2019, 68(23): 235202. doi: 10.7498/aps.68.20191122
    [10] 龙建飞, 张天平, 杨威, 孙明明, 贾艳辉, 刘明正. 离子推力器推力密度特性. 物理学报, 2018, 67(2): 022901. doi: 10.7498/aps.67.20171507
    [11] 龙建飞, 张天平, 李娟, 贾艳辉. 离子推力器栅极透过率径向分布特性研究. 物理学报, 2017, 66(16): 162901. doi: 10.7498/aps.66.162901
    [12] 金逸舟, 杨涓, 冯冰冰, 罗立涛, 汤明杰. 不同磁路电子回旋共振离子源引出实验. 物理学报, 2016, 65(4): 045201. doi: 10.7498/aps.65.045201
    [13] 陈茂林, 夏广庆, 徐宗琦, 毛根旺. 栅极热变形对离子推力器工作过程影响分析. 物理学报, 2015, 64(9): 094104. doi: 10.7498/aps.64.094104
    [14] 汤明杰, 杨涓, 金逸舟, 罗立涛, 冯冰冰. 微型电子回旋共振离子推力器离子源结构优化实验研究. 物理学报, 2015, 64(21): 215202. doi: 10.7498/aps.64.215202
    [15] 陈茂林, 夏广庆, 毛根旺. 多模式离子推力器栅极系统三维粒子模拟仿真. 物理学报, 2014, 63(18): 182901. doi: 10.7498/aps.63.182901
    [16] 高碧荣, 刘悦. 电子回旋共振等离子体密度均匀性的数值研究. 物理学报, 2011, 60(4): 045201. doi: 10.7498/aps.60.045201
    [17] 杨涓, 石峰, 杨铁链, 孟志强. 电子回旋共振离子推力器放电室等离子体数值模拟. 物理学报, 2010, 59(12): 8701-8706. doi: 10.7498/aps.59.8701
    [18] 王世庆, 金亚秋. 电子回旋共振加热情形锯齿振荡的数值分析. 物理学报, 2001, 50(9): 1737-1741. doi: 10.7498/aps.50.1737
    [19] 刘明海, 胡希伟, 邬钦崇, 俞国扬. 电子回旋共振等离子体源的数值模拟. 物理学报, 2000, 49(3): 497-501. doi: 10.7498/aps.49.497
    [20] 宫野, 温晓军, 张鹏云, 邓新绿. 圆柱模型下电子回旋共振微波等离子体离子输运过程的数值研究. 物理学报, 1997, 46(12): 2376-2383. doi: 10.7498/aps.46.2376
计量
  • 文章访问数:  519
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-03
  • 修回日期:  2024-02-04
  • 上网日期:  2024-02-26
  • 刊出日期:  2024-05-05

/

返回文章
返回