-
为了研究离子推力器输入参数对工作性能的影响,采用试验研究和理论分析的方法研究了离子推力器加速电压和阳极流率对离子推力器性能的影响. 研究结果表明: 一定范围内离子束流随着加速电压绝对值的减小不断减小, 然后突然增大, 大、小推力模式下的电子返流极限电压分别为–140 V和–115 V, 放电电压、放电损耗随阳极流率减小单调增大, 减速电流单调减小, 通过调节阳极电流、栅间电压、工质气体流量, 功率为300—4850 W下, 推力为11—188 mN, 比冲为1800—3567 s, 效率为34%—67%, 在3000 W时推力器最高效率达到67%, 该转折点对推力器设计和应用有关键意义, 应用要结合在轨任务剖面选择合理的工作参数区间.In order to achieve the optimal performance and reliability of the ion thruster in a wide power range, the influence of acceleration grid voltage and anode flow rate on the performance of ion thruster are studied experimentally and theoretically. The results show that in a certain range the ion beam current decreases continuously with the decrease of the absolute value of the accelerating voltage, and then increases suddenly. The electron backstreaming limited voltages in large and small thrust modes are –140 and –115 V, respectively. When the anode flow rate increases, the discharge voltage and discharge loss increase monotonically, and the deceleration current decreases monotonously. Under the power of 300−4850 W, the thrust is 11−188 mN, the specific impulse is 1800−3567 s, and the efficiency ranges from 34% to 67% by adjusting the anode current, grid voltage and working fluid gas flow. The maximum efficiency of thruster reaches 67% at 3000 W. This turning point is critical for thruster design and on-orbit applications. Choosing a reasonable range of working parameters can improve the performance and life of the thruster in application.
-
Keywords:
- ion thruster /
- ion beam current /
- acceleration grid voltage /
- anode flow rate
[1] Hutchins M, Simpson H, Palencia Jiménez J 2015 Presented at Joint Conference of 30th International Symposium on Space Technology and Science 34th International Electric Propulsion Conference and 6th Nanosatellite Symposium Hyogo-Kobe, Japan, July 4−10, 2015 p2015-b-1311
[2] Burak K K, Deborah A L 2017 J. Propul. Power 33 264Google Scholar
[3] Li J X, Wang Z H, Zhang Y B, Fu H M, Liu C R, Krishnaswamy S 2016 J. Propul. Power 32 948Google Scholar
[4] Williams L T, Walker M L R 2014 J. Propul. Power 30 645Google Scholar
[5] Canuto E, Massotti L 2009 Acta Astronaut. 64 325Google Scholar
[6] Groh K H, Loeb H W 1994 Rev. Sci. Instrum. 65 1741Google Scholar
[7] Rawlin V K, Sovey J S, Hamley J A 1999 Presented at the 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Albuquerque, USA, September 28−30, 1999 p99- 4612-1
[8] Brophy J R, Mareucei M G, Ganapathi C B, Garner C E, Henry M D, Nakazono B, Noon D 2003 Presented at the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Huntsville, USA, July 20−23, 2003 p2003-4542-1
[9] Rayman M D, Varghese P, Lehman D H, Livesay L 2000 Acta Astronaut. 47 475Google Scholar
[10] Garner C E, Rayman M D, Brophy J R, Mikes S C 2011 Presented at the 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit San Diego, USA, July 31−August 03, 2011 p2011-5661-1
[11] Malone S P, Soulas G C 2004 Presented at the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Fort Lauderdale, USA, July 11−14, 2004 p2004-3784-1
[12] Goebel D M, Martinez-Lavin M, Bond T A, King M 2002 Presented at the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Conferences Indianapolis, USA, July 7−10, 2002 p2002-4348-1
[13] Koroteev A S, Lovtsov A S, Muravlev V A 2017 Eur. Phys. J. D 71 120
[14] Snyder J S, Goebel D M, Hofer R R, Polk J E 2012 J. Propul. Power. 28 371Google Scholar
[15] Herman D A, Soulas G C, Patterson M J 2007 Presented at the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Cincinnati, USA, July 8−11, 2007 p2007-5212-1
[16] Brophy J R, Katz I, Polk J E, Anderson J R 2002 Presentedat the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Indianapolis, USA, July 7−10, 2002 p2002-4261-1
[17] Wang J, Polk J, Brophy J, Katz I 2003 J. Propul. Power 19 1192Google Scholar
[18] 陈茂林, 夏广庆, 毛根旺 2014 物理学报 63 182901Google Scholar
Chen M L, Xia G Q, Mao G W 2014 Acta Phys. Sin. 63 182901Google Scholar
[19] 龙建飞, 张天平, 李娟, 贾艳辉 2017 物理学报 66 162901Google Scholar
Long J F, Zhang T P, Li J, Jia Y H 2017 Acta Phys. Sin. 66 162901Google Scholar
[20] 赵以德, 李娟, 吴宗海, 黄永杰, 李建鹏, 张天平 2020 物理学报 69 115203Google Scholar
Zhao Y D, Li J, Wu Z H, Huang Y J, Li J P, Zhang T P 2020 Acta Phys. Sin. 69 115203Google Scholar
[21] Wirz R, Goebel D M 2008 Plasma Sources Sci. Technol. 17 035010Google Scholar
[22] 王雨玮, 任军学, 吉林桔, 汤海滨 2016 中国空间科学技术 36 77Google Scholar
Wang Y W, Ren J X, Ji L J, Tang H B 2016 Chin. Space Sci. Technol. 36 77Google Scholar
[23] 李建鹏, 张天平, 赵以德, 李娟, 郭德洲, 胡竟 2021 推进技术 42 1435
Li J P, Zhang T P, Zhao Y D, Li J, Guo D Z, Hu J 2021 J. Propul. Technol. 42 1435
[24] 赵以德, 张天平, 黄永杰, 孙小菁, 孙运奎, 李娟, 杨福全, 池秀芬 2018 推进技术 39 942
Zhao Y D, Zhang T P, Huang Y J, Sun X J, Sun Y K, Li J, Yang F Q, Chi X F 2018 J. Propul. Technol. 39 942
[25] Zhang T P, Wang X Y, Jiang H C 2013 Presented at the 33th International Electric Propulsion Conference Washington, USA, October 6−10, 2013 p2013-48-1
[26] Jahn R G, Von J W 2006 Physics of Electric Propulsion (New York: Dover Pubns) p68
[27] Farnell C C, Williams J D 2011 Plasma Sources Sci. Technol. 20 025006Google Scholar
[28] Bittencourt J A 1980 Fundamentals of Plasma Physics (New York: Springer) p95
[29] Piel A, Brown M 2011 Phys. Today 64 55
[30] Goebel D M, Katz I 2008 Fundamentals of Electric Propulsion: Ion and Hall Thruster (Hoboken: John Wiley and Sons) p245
[31] Green T S 1976 J. Phy. D:Appl. Phys. 9 1165Google Scholar
[32] Goebel D M, Jameson K K, Katz I 2007 Phys. Plasmas 14 103508Google Scholar
[33] Palluel P, Shroff A M 1980 J. Appl. Phys. 51 2894Google Scholar
-
表 1 多模式离子推力器应用情况
Table 1. Application of multi-mode ion thruster.
-
[1] Hutchins M, Simpson H, Palencia Jiménez J 2015 Presented at Joint Conference of 30th International Symposium on Space Technology and Science 34th International Electric Propulsion Conference and 6th Nanosatellite Symposium Hyogo-Kobe, Japan, July 4−10, 2015 p2015-b-1311
[2] Burak K K, Deborah A L 2017 J. Propul. Power 33 264Google Scholar
[3] Li J X, Wang Z H, Zhang Y B, Fu H M, Liu C R, Krishnaswamy S 2016 J. Propul. Power 32 948Google Scholar
[4] Williams L T, Walker M L R 2014 J. Propul. Power 30 645Google Scholar
[5] Canuto E, Massotti L 2009 Acta Astronaut. 64 325Google Scholar
[6] Groh K H, Loeb H W 1994 Rev. Sci. Instrum. 65 1741Google Scholar
[7] Rawlin V K, Sovey J S, Hamley J A 1999 Presented at the 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Albuquerque, USA, September 28−30, 1999 p99- 4612-1
[8] Brophy J R, Mareucei M G, Ganapathi C B, Garner C E, Henry M D, Nakazono B, Noon D 2003 Presented at the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Huntsville, USA, July 20−23, 2003 p2003-4542-1
[9] Rayman M D, Varghese P, Lehman D H, Livesay L 2000 Acta Astronaut. 47 475Google Scholar
[10] Garner C E, Rayman M D, Brophy J R, Mikes S C 2011 Presented at the 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit San Diego, USA, July 31−August 03, 2011 p2011-5661-1
[11] Malone S P, Soulas G C 2004 Presented at the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Fort Lauderdale, USA, July 11−14, 2004 p2004-3784-1
[12] Goebel D M, Martinez-Lavin M, Bond T A, King M 2002 Presented at the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Conferences Indianapolis, USA, July 7−10, 2002 p2002-4348-1
[13] Koroteev A S, Lovtsov A S, Muravlev V A 2017 Eur. Phys. J. D 71 120
[14] Snyder J S, Goebel D M, Hofer R R, Polk J E 2012 J. Propul. Power. 28 371Google Scholar
[15] Herman D A, Soulas G C, Patterson M J 2007 Presented at the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Cincinnati, USA, July 8−11, 2007 p2007-5212-1
[16] Brophy J R, Katz I, Polk J E, Anderson J R 2002 Presentedat the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Indianapolis, USA, July 7−10, 2002 p2002-4261-1
[17] Wang J, Polk J, Brophy J, Katz I 2003 J. Propul. Power 19 1192Google Scholar
[18] 陈茂林, 夏广庆, 毛根旺 2014 物理学报 63 182901Google Scholar
Chen M L, Xia G Q, Mao G W 2014 Acta Phys. Sin. 63 182901Google Scholar
[19] 龙建飞, 张天平, 李娟, 贾艳辉 2017 物理学报 66 162901Google Scholar
Long J F, Zhang T P, Li J, Jia Y H 2017 Acta Phys. Sin. 66 162901Google Scholar
[20] 赵以德, 李娟, 吴宗海, 黄永杰, 李建鹏, 张天平 2020 物理学报 69 115203Google Scholar
Zhao Y D, Li J, Wu Z H, Huang Y J, Li J P, Zhang T P 2020 Acta Phys. Sin. 69 115203Google Scholar
[21] Wirz R, Goebel D M 2008 Plasma Sources Sci. Technol. 17 035010Google Scholar
[22] 王雨玮, 任军学, 吉林桔, 汤海滨 2016 中国空间科学技术 36 77Google Scholar
Wang Y W, Ren J X, Ji L J, Tang H B 2016 Chin. Space Sci. Technol. 36 77Google Scholar
[23] 李建鹏, 张天平, 赵以德, 李娟, 郭德洲, 胡竟 2021 推进技术 42 1435
Li J P, Zhang T P, Zhao Y D, Li J, Guo D Z, Hu J 2021 J. Propul. Technol. 42 1435
[24] 赵以德, 张天平, 黄永杰, 孙小菁, 孙运奎, 李娟, 杨福全, 池秀芬 2018 推进技术 39 942
Zhao Y D, Zhang T P, Huang Y J, Sun X J, Sun Y K, Li J, Yang F Q, Chi X F 2018 J. Propul. Technol. 39 942
[25] Zhang T P, Wang X Y, Jiang H C 2013 Presented at the 33th International Electric Propulsion Conference Washington, USA, October 6−10, 2013 p2013-48-1
[26] Jahn R G, Von J W 2006 Physics of Electric Propulsion (New York: Dover Pubns) p68
[27] Farnell C C, Williams J D 2011 Plasma Sources Sci. Technol. 20 025006Google Scholar
[28] Bittencourt J A 1980 Fundamentals of Plasma Physics (New York: Springer) p95
[29] Piel A, Brown M 2011 Phys. Today 64 55
[30] Goebel D M, Katz I 2008 Fundamentals of Electric Propulsion: Ion and Hall Thruster (Hoboken: John Wiley and Sons) p245
[31] Green T S 1976 J. Phy. D:Appl. Phys. 9 1165Google Scholar
[32] Goebel D M, Jameson K K, Katz I 2007 Phys. Plasmas 14 103508Google Scholar
[33] Palluel P, Shroff A M 1980 J. Appl. Phys. 51 2894Google Scholar
计量
- 文章访问数: 4977
- PDF下载量: 77
- 被引次数: 0