搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

加速电压和阳极流率对离子推力器性能的影响

李建鹏 靳伍银 赵以德

引用本文:
Citation:

加速电压和阳极流率对离子推力器性能的影响

李建鹏, 靳伍银, 赵以德

Influence of acceleration grid voltage and anode flow rate on performance of ion thruster

Li Jian-Peng, Jin Wu-Yin, Zhao Yi-De
PDF
HTML
导出引用
  • 为了研究离子推力器输入参数对工作性能的影响,采用试验研究和理论分析的方法研究了离子推力器加速电压和阳极流率对离子推力器性能的影响. 研究结果表明: 一定范围内离子束流随着加速电压绝对值的减小不断减小, 然后突然增大, 大、小推力模式下的电子返流极限电压分别为–140 V和–115 V, 放电电压、放电损耗随阳极流率减小单调增大, 减速电流单调减小, 通过调节阳极电流、栅间电压、工质气体流量, 功率为300—4850 W下, 推力为11—188 mN, 比冲为1800—3567 s, 效率为34%—67%, 在3000 W时推力器最高效率达到67%, 该转折点对推力器设计和应用有关键意义, 应用要结合在轨任务剖面选择合理的工作参数区间.
    In order to achieve the optimal performance and reliability of the ion thruster in a wide power range, the influence of acceleration grid voltage and anode flow rate on the performance of ion thruster are studied experimentally and theoretically. The results show that in a certain range the ion beam current decreases continuously with the decrease of the absolute value of the accelerating voltage, and then increases suddenly. The electron backstreaming limited voltages in large and small thrust modes are –140 and –115 V, respectively. When the anode flow rate increases, the discharge voltage and discharge loss increase monotonically, and the deceleration current decreases monotonously. Under the power of 300−4850 W, the thrust is 11−188 mN, the specific impulse is 1800−3567 s, and the efficiency ranges from 34% to 67% by adjusting the anode current, grid voltage and working fluid gas flow. The maximum efficiency of thruster reaches 67% at 3000 W. This turning point is critical for thruster design and on-orbit applications. Choosing a reasonable range of working parameters can improve the performance and life of the thruster in application.
      通信作者: 李建鹏, ljplzjtedu@163.com
    • 基金项目: 国家自然科学基金(批准号: 61601210)和中国空间技术研究院杰出青年人才基金资助的课题.
      Corresponding author: Li Jian-Peng, ljplzjtedu@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61601210) and the Fund for Distinguished Young Scholars of China Academy of Space Technology.
    [1]

    Hutchins M, Simpson H, Palencia Jiménez J 2015 Presented at Joint Conference of 30th International Symposium on Space Technology and Science 34th International Electric Propulsion Conference and 6th Nanosatellite Symposium Hyogo-Kobe, Japan, July 4−10, 2015 p2015-b-1311

    [2]

    Burak K K, Deborah A L 2017 J. Propul. Power 33 264Google Scholar

    [3]

    Li J X, Wang Z H, Zhang Y B, Fu H M, Liu C R, Krishnaswamy S 2016 J. Propul. Power 32 948Google Scholar

    [4]

    Williams L T, Walker M L R 2014 J. Propul. Power 30 645Google Scholar

    [5]

    Canuto E, Massotti L 2009 Acta Astronaut. 64 325Google Scholar

    [6]

    Groh K H, Loeb H W 1994 Rev. Sci. Instrum. 65 1741Google Scholar

    [7]

    Rawlin V K, Sovey J S, Hamley J A 1999 Presented at the 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Albuquerque, USA, September 28−30, 1999 p99- 4612-1

    [8]

    Brophy J R, Mareucei M G, Ganapathi C B, Garner C E, Henry M D, Nakazono B, Noon D 2003 Presented at the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Huntsville, USA, July 20−23, 2003 p2003-4542-1

    [9]

    Rayman M D, Varghese P, Lehman D H, Livesay L 2000 Acta Astronaut. 47 475Google Scholar

    [10]

    Garner C E, Rayman M D, Brophy J R, Mikes S C 2011 Presented at the 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit San Diego, USA, July 31−August 03, 2011 p2011-5661-1

    [11]

    Malone S P, Soulas G C 2004 Presented at the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Fort Lauderdale, USA, July 11−14, 2004 p2004-3784-1

    [12]

    Goebel D M, Martinez-Lavin M, Bond T A, King M 2002 Presented at the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Conferences Indianapolis, USA, July 7−10, 2002 p2002-4348-1

    [13]

    Koroteev A S, Lovtsov A S, Muravlev V A 2017 Eur. Phys. J. D 71 120

    [14]

    Snyder J S, Goebel D M, Hofer R R, Polk J E 2012 J. Propul. Power. 28 371Google Scholar

    [15]

    Herman D A, Soulas G C, Patterson M J 2007 Presented at the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Cincinnati, USA, July 8−11, 2007 p2007-5212-1

    [16]

    Brophy J R, Katz I, Polk J E, Anderson J R 2002 Presentedat the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Indianapolis, USA, July 7−10, 2002 p2002-4261-1

    [17]

    Wang J, Polk J, Brophy J, Katz I 2003 J. Propul. Power 19 1192Google Scholar

    [18]

    陈茂林, 夏广庆, 毛根旺 2014 物理学报 63 182901Google Scholar

    Chen M L, Xia G Q, Mao G W 2014 Acta Phys. Sin. 63 182901Google Scholar

    [19]

    龙建飞, 张天平, 李娟, 贾艳辉 2017 物理学报 66 162901Google Scholar

    Long J F, Zhang T P, Li J, Jia Y H 2017 Acta Phys. Sin. 66 162901Google Scholar

    [20]

    赵以德, 李娟, 吴宗海, 黄永杰, 李建鹏, 张天平 2020 物理学报 69 115203Google Scholar

    Zhao Y D, Li J, Wu Z H, Huang Y J, Li J P, Zhang T P 2020 Acta Phys. Sin. 69 115203Google Scholar

    [21]

    Wirz R, Goebel D M 2008 Plasma Sources Sci. Technol. 17 035010Google Scholar

    [22]

    王雨玮, 任军学, 吉林桔, 汤海滨 2016 中国空间科学技术 36 77Google Scholar

    Wang Y W, Ren J X, Ji L J, Tang H B 2016 Chin. Space Sci. Technol. 36 77Google Scholar

    [23]

    李建鹏, 张天平, 赵以德, 李娟, 郭德洲, 胡竟 2021 推进技术 42 1435

    Li J P, Zhang T P, Zhao Y D, Li J, Guo D Z, Hu J 2021 J. Propul. Technol. 42 1435

    [24]

    赵以德, 张天平, 黄永杰, 孙小菁, 孙运奎, 李娟, 杨福全, 池秀芬 2018 推进技术 39 942

    Zhao Y D, Zhang T P, Huang Y J, Sun X J, Sun Y K, Li J, Yang F Q, Chi X F 2018 J. Propul. Technol. 39 942

    [25]

    Zhang T P, Wang X Y, Jiang H C 2013 Presented at the 33th International Electric Propulsion Conference Washington, USA, October 6−10, 2013 p2013-48-1

    [26]

    Jahn R G, Von J W 2006 Physics of Electric Propulsion (New York: Dover Pubns) p68

    [27]

    Farnell C C, Williams J D 2011 Plasma Sources Sci. Technol. 20 025006Google Scholar

    [28]

    Bittencourt J A 1980 Fundamentals of Plasma Physics (New York: Springer) p95

    [29]

    Piel A, Brown M 2011 Phys. Today 64 55

    [30]

    Goebel D M, Katz I 2008 Fundamentals of Electric Propulsion: Ion and Hall Thruster (Hoboken: John Wiley and Sons) p245

    [31]

    Green T S 1976 J. Phy. D:Appl. Phys. 9 1165Google Scholar

    [32]

    Goebel D M, Jameson K K, Katz I 2007 Phys. Plasmas 14 103508Google Scholar

    [33]

    Palluel P, Shroff A M 1980 J. Appl. Phys. 51 2894Google Scholar

  • 图 1  离子推力器试验组成图

    Fig. 1.  Schematic of experiental principle.

    图 2  离子推力器点火照片

    Fig. 2.  Discharge of the ion thruster.

    图 3  离子束电流随加速电压变化情况 (a) 小推力模式; (b) 大推力模式

    Fig. 3.  Beam current as a function of accel-grid voltage for different thrust mode: (a) Low thrust mode; (b) high thrust mode.

    图 4  放电电压随阳极流率的变化情况 (a) 小推力模式; (b) 大推力模式

    Fig. 4.  Discharge voltage as a function of anode mass flow rate for different thrust mode: (a) Low thrust mode; (b) high thrust mode.

    图 5  放电损耗随阳极流率的变化情况 (a) 小推力模式; (b) 大推力模式

    Fig. 5.  Discharge loss as a function of anode mass flow rate for different thrust mode: (a) Low thrust mode; (b) high thrust mode.

    图 6  减速电流随阳极流率的变化情况 (a) 小推力模式; (b) 大推力模式

    Fig. 6.  Decel-current as a function of anode mass flow rate for different thrust mode: (a) Low thrust mode; (b) high thrust mode.

    图 7  推力、比冲和效率随功率变化曲线 (a) 推力; (b) 比冲; (c) 效率

    Fig. 7.  Thrust, specific impulse and efficiency as a function of input power: (a) Thrust; (b) specific impulse; (c) efficiency.

    表 1  多模式离子推力器应用情况

    Table 1.  Application of multi-mode ion thruster.

    离子推力器推力器性能指标
    推力/mN比冲/s效率功率/kW
    NSTAR[7-10]19.5—921951—308338%~59%0.5—2.3
    NEXT[11]25.5—2361400—419032%~71%0.5—6.9
    XIPS-25[12]14.4—173.71610—366435%~66%0.3—4.5
    IT-500[13]375, 585, 750714218, 28, 35
    T6[14]76.5, 102.1127.7, 147.83720, 38803990, 39802520, 32804040, 4620
    下载: 导出CSV
  • [1]

    Hutchins M, Simpson H, Palencia Jiménez J 2015 Presented at Joint Conference of 30th International Symposium on Space Technology and Science 34th International Electric Propulsion Conference and 6th Nanosatellite Symposium Hyogo-Kobe, Japan, July 4−10, 2015 p2015-b-1311

    [2]

    Burak K K, Deborah A L 2017 J. Propul. Power 33 264Google Scholar

    [3]

    Li J X, Wang Z H, Zhang Y B, Fu H M, Liu C R, Krishnaswamy S 2016 J. Propul. Power 32 948Google Scholar

    [4]

    Williams L T, Walker M L R 2014 J. Propul. Power 30 645Google Scholar

    [5]

    Canuto E, Massotti L 2009 Acta Astronaut. 64 325Google Scholar

    [6]

    Groh K H, Loeb H W 1994 Rev. Sci. Instrum. 65 1741Google Scholar

    [7]

    Rawlin V K, Sovey J S, Hamley J A 1999 Presented at the 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Albuquerque, USA, September 28−30, 1999 p99- 4612-1

    [8]

    Brophy J R, Mareucei M G, Ganapathi C B, Garner C E, Henry M D, Nakazono B, Noon D 2003 Presented at the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Huntsville, USA, July 20−23, 2003 p2003-4542-1

    [9]

    Rayman M D, Varghese P, Lehman D H, Livesay L 2000 Acta Astronaut. 47 475Google Scholar

    [10]

    Garner C E, Rayman M D, Brophy J R, Mikes S C 2011 Presented at the 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit San Diego, USA, July 31−August 03, 2011 p2011-5661-1

    [11]

    Malone S P, Soulas G C 2004 Presented at the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Fort Lauderdale, USA, July 11−14, 2004 p2004-3784-1

    [12]

    Goebel D M, Martinez-Lavin M, Bond T A, King M 2002 Presented at the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Conferences Indianapolis, USA, July 7−10, 2002 p2002-4348-1

    [13]

    Koroteev A S, Lovtsov A S, Muravlev V A 2017 Eur. Phys. J. D 71 120

    [14]

    Snyder J S, Goebel D M, Hofer R R, Polk J E 2012 J. Propul. Power. 28 371Google Scholar

    [15]

    Herman D A, Soulas G C, Patterson M J 2007 Presented at the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Cincinnati, USA, July 8−11, 2007 p2007-5212-1

    [16]

    Brophy J R, Katz I, Polk J E, Anderson J R 2002 Presentedat the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Indianapolis, USA, July 7−10, 2002 p2002-4261-1

    [17]

    Wang J, Polk J, Brophy J, Katz I 2003 J. Propul. Power 19 1192Google Scholar

    [18]

    陈茂林, 夏广庆, 毛根旺 2014 物理学报 63 182901Google Scholar

    Chen M L, Xia G Q, Mao G W 2014 Acta Phys. Sin. 63 182901Google Scholar

    [19]

    龙建飞, 张天平, 李娟, 贾艳辉 2017 物理学报 66 162901Google Scholar

    Long J F, Zhang T P, Li J, Jia Y H 2017 Acta Phys. Sin. 66 162901Google Scholar

    [20]

    赵以德, 李娟, 吴宗海, 黄永杰, 李建鹏, 张天平 2020 物理学报 69 115203Google Scholar

    Zhao Y D, Li J, Wu Z H, Huang Y J, Li J P, Zhang T P 2020 Acta Phys. Sin. 69 115203Google Scholar

    [21]

    Wirz R, Goebel D M 2008 Plasma Sources Sci. Technol. 17 035010Google Scholar

    [22]

    王雨玮, 任军学, 吉林桔, 汤海滨 2016 中国空间科学技术 36 77Google Scholar

    Wang Y W, Ren J X, Ji L J, Tang H B 2016 Chin. Space Sci. Technol. 36 77Google Scholar

    [23]

    李建鹏, 张天平, 赵以德, 李娟, 郭德洲, 胡竟 2021 推进技术 42 1435

    Li J P, Zhang T P, Zhao Y D, Li J, Guo D Z, Hu J 2021 J. Propul. Technol. 42 1435

    [24]

    赵以德, 张天平, 黄永杰, 孙小菁, 孙运奎, 李娟, 杨福全, 池秀芬 2018 推进技术 39 942

    Zhao Y D, Zhang T P, Huang Y J, Sun X J, Sun Y K, Li J, Yang F Q, Chi X F 2018 J. Propul. Technol. 39 942

    [25]

    Zhang T P, Wang X Y, Jiang H C 2013 Presented at the 33th International Electric Propulsion Conference Washington, USA, October 6−10, 2013 p2013-48-1

    [26]

    Jahn R G, Von J W 2006 Physics of Electric Propulsion (New York: Dover Pubns) p68

    [27]

    Farnell C C, Williams J D 2011 Plasma Sources Sci. Technol. 20 025006Google Scholar

    [28]

    Bittencourt J A 1980 Fundamentals of Plasma Physics (New York: Springer) p95

    [29]

    Piel A, Brown M 2011 Phys. Today 64 55

    [30]

    Goebel D M, Katz I 2008 Fundamentals of Electric Propulsion: Ion and Hall Thruster (Hoboken: John Wiley and Sons) p245

    [31]

    Green T S 1976 J. Phy. D:Appl. Phys. 9 1165Google Scholar

    [32]

    Goebel D M, Jameson K K, Katz I 2007 Phys. Plasmas 14 103508Google Scholar

    [33]

    Palluel P, Shroff A M 1980 J. Appl. Phys. 51 2894Google Scholar

  • [1] 付瑜亮, 张思远, 杨谨远, 孙安邦, 王亚楠. 微波离子推力器中磁场发散区电子加热模式研究. 物理学报, 2024, 73(9): 095203. doi: 10.7498/aps.73.20240017
    [2] 许莫非, 于翔, 张世健, Gennady Efimovich Remnev, 乐小云. 一种用于强流脉冲离子束的束流输出稳定性实时监测方法. 物理学报, 2023, 72(17): 175205. doi: 10.7498/aps.72.20230854
    [3] 谈人玮, 杨涓, 耿海, 吴先明, 牟浩. 氮气工质10厘米ECRIT中和器实验研究. 物理学报, 2023, 72(4): 045202. doi: 10.7498/aps.72.20221951
    [4] 付瑜亮, 杨涓, 夏旭, 孙安邦. 放电室长度对电子回旋共振离子推力器性能的影响机理. 物理学报, 2023, 72(17): 175204. doi: 10.7498/aps.72.20230719
    [5] 李建鹏, 靳伍银, 赵以德. 多模式离子推力器输入参数设计及工作特性研究. 物理学报, 2022, 71(7): 075203. doi: 10.7498/aps.71.20212045
    [6] 李建鹏, 赵以德, 靳伍银, 张兴民, 李娟, 王彦龙. 多模式离子推力器放电室和栅极设计及其性能实验研究. 物理学报, 2022, 71(19): 195203. doi: 10.7498/aps.71.20220720
    [7] 龙建飞, 张天平, 杨威, 孙明明, 贾艳辉, 刘明正. 离子推力器推力密度特性. 物理学报, 2018, 67(2): 022901. doi: 10.7498/aps.67.20171507
    [8] 龙建飞, 张天平, 李娟, 贾艳辉. 离子推力器栅极透过率径向分布特性研究. 物理学报, 2017, 66(16): 162901. doi: 10.7498/aps.66.162901
    [9] 陈茂林, 夏广庆, 徐宗琦, 毛根旺. 栅极热变形对离子推力器工作过程影响分析. 物理学报, 2015, 64(9): 094104. doi: 10.7498/aps.64.094104
    [10] 陈茂林, 夏广庆, 毛根旺. 多模式离子推力器栅极系统三维粒子模拟仿真. 物理学报, 2014, 63(18): 182901. doi: 10.7498/aps.63.182901
    [11] 张锐, 张代贤, 张帆, 何振, 吴建军. 脉冲等离子体推力器羽流沉积薄膜的结构与光学性质研究. 物理学报, 2013, 62(2): 025207. doi: 10.7498/aps.62.025207
    [12] 宫 野, 张建红, 王晓东, 吴 迪, 刘金远, 刘 悦, 王晓钢, 马腾才. 强流脉冲离子束辐照双层靶能量沉积的数值模拟. 物理学报, 2008, 57(8): 5095-5099. doi: 10.7498/aps.57.5095
    [13] 吴 迪, 宫 野, 刘金远, 王晓钢, 刘 悦, 马腾才. 强流脉冲离子束烧蚀等离子体向背景气体中喷发的数值研究. 物理学报, 2007, 56(1): 333-337. doi: 10.7498/aps.56.333
    [14] 吴 迪, 宫 野, 刘金远, 王晓钢, 刘 悦, 马腾才. 强流脉冲离子束辐照靶材烧蚀效应二维数值研究. 物理学报, 2006, 55(1): 398-402. doi: 10.7498/aps.55.398
    [15] 吴 迪, 宫 野, 刘金远, 王晓钢, 刘 悦, 马腾才. 强流脉冲离子束辐照靶及其喷发的数值研究. 物理学报, 2006, 55(7): 3501-3505. doi: 10.7498/aps.55.3501
    [16] 牟宗信, 李国卿, 秦福文, 黄开玉, 车德良. 非平衡磁控溅射系统离子束流磁镜效应模型. 物理学报, 2005, 54(3): 1378-1384. doi: 10.7498/aps.54.1378
    [17] 吴 迪, 宫 野, 刘金远, 王晓钢. 强流脉冲离子束与靶作用域值的研究. 物理学报, 2005, 54(4): 1636-1640. doi: 10.7498/aps.54.1636
    [18] 梅显秀, 徐军, 马腾才. 利用强流脉冲离子束技术在室温下沉积类金刚石薄膜研究. 物理学报, 2002, 51(8): 1875-1880. doi: 10.7498/aps.51.1875
    [19] 田人和, 张荟星. 强流重离子束在轴对称电场中的温度和能量展宽. 物理学报, 1992, 41(3): 408-412. doi: 10.7498/aps.41.408
    [20] 江兴流, 陈克凡, 朴禹伯. 新型毫微秒强流脉冲电子束和离子束发生装置. 物理学报, 1983, 32(10): 1344-1348. doi: 10.7498/aps.32.1344
计量
  • 文章访问数:  3427
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-16
  • 修回日期:  2021-08-25
  • 上网日期:  2021-09-10
  • 刊出日期:  2022-01-05

/

返回文章
返回