搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离子推力器推力密度特性

龙建飞 张天平 杨威 孙明明 贾艳辉 刘明正

引用本文:
Citation:

离子推力器推力密度特性

龙建飞, 张天平, 杨威, 孙明明, 贾艳辉, 刘明正

Thrust density characteristics of ion thruster

Long Jian-Fei, Zhang Tian-Ping, Yang Wei, Sun Ming-Ming, Jia Yan-Hui, Liu Ming-Zheng
PDF
导出引用
  • 离子推力器推力密度分布对航天器轨道维持和修正具有重要影响.采用粒子模拟-蒙特卡罗碰撞方法模拟束流等离子体输运过程,分析束流多组分粒子喷出数量和速度等微观参数,并计算得到单孔束流推力,结合放电室出口等离子体密度分布,进一步对推力密度分布特性分析,最后开展实验验证.研究结果显示:束流中单价离子、双荷离子以及交换电荷离子的推力贡献比分别为84.63%,15.35%和1.82%,可见推力主要来源于束流中的单价离子和双荷离子,交换电荷离子对推力贡献很小;推力密度分布具有较好的中心轴对称性,从推力器中心沿着径向先快速下降后趋于缓慢;与实验结果对比,经验模型相对误差约为4.1%,数值模型相对误差约为2.8%,相比经验模型,数值模型具有更好的准确性.研究结果可为离子推力器推力密度分布均匀性等优化提供参考.
    Thrust density distribution of ion thruster is an important factor that affects the orbit correction and station keeping of the spacecraft. Current empirical models mainly concern themselves with the overall thrust of the ion thruster, yet the thrust density distribution has not been fully understood. Hence it is necessary to investigate the thrust density characteristics of the ion thruster to devise the approach to optimizing the thruster performances. In this study, the thrust density characteristics of the ion thruster is analyzed and discussed by combining the empirical and theoretical methods. An ion thruster utilizes biased grids to extract ions from discharge chamber and accelerate them to high velocities, thereby forming a beam and generating thrust. In this paper, we analyze the working process of the ion thruster. The thrust expression as a function of beam micro-particle parameters is presented. Meanwhile the transport process of the plasma in the beam stream is simulated by the particle in cell-Monte Carlo (PIC-MCC) method for two-grid optics. The motion behavior of ions is modeled by the PIC method, while the collisions of particles are modeled by the MCC method. In the simulation, the particle trajectories are traced and the micro information about ejected charged ions is recorded with respect to singly charged ion, doubly charged ion and charge exchanged (CEX) ion. By analyzing the density and axial velocity of the charged particles in the beam stream, the thrust of the beam from a single grid hole can be calculated, based on which the thrust distribution of the thruster can be inferred by considering the distribution of plasma density at the exit of discharge chamber. Moreover, the above theoretical analysis of the thrust density is tested experimentally. The studies show that the thrust contribution percentages of the singly charged ion, doubly charged ion and CEX ion in the beam current are 84.63%, 15.35%, and 1.82%, respectively. Apparently, the main contributions to the thrust are made by the singly charged ions and doubly charged ions in the beam plasma, while the CEX ions have a trivial effect on the variation of the thrust. The distribution of the thrust density shows good symmetry along the central axis and it levels off after a fast decline in the radial direction. Comparisons of empirical and numerical results with the experimental results show that the empirical results have an error of about 4.1% and the numerical results have an error of about 2.8%. This indicates that the computational accuracy of our numerical model is better than that of the empirical model This work provides a reference for optimizing the thrust density uniformity of an ion thruster.
      通信作者: 龙建飞, ljf510@163.com
    • 基金项目: 国家自然科学基金(批准号:61601210)和真空技术与物理重点实验室基金(批准号:9140C55026150C55013)资助的课题.
      Corresponding author: Long Jian-Fei, ljf510@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61601210) and the Key Laboratory of Science and Technology on Vacuum Technology and Physics, China (Grant No. 9140C550206130C55003).
    [1]

    Burak K K, Deborah A L 2017 J. Propul. Power 33 264

    [2]

    Li J X, Wang Z H, Zhang Y B, Fu H M, Liu C R, Krishnaswamy S 2016 J. Propul. Power 32 948

    [3]

    Zhang T P, Wang X Y, Jiang H C 2013 Presented at the 33th International Electric Propulsion Conference Washington, USA, October 6-10, 2013 p2013-48-1

    [4]

    Zhou Z C, Gao J 2015 Spacecraft Engineer. 24 6 (in Chinese)[周志成, 高军 2015 航天器工程 24 6]

    [5]

    Williams L T, Walker M L R 2014 J. Propul. Power 30 645

    [6]

    Yamamoto N, Tomita K, Yamasaki N, Tsuru T, Ezaki T, Kotani Y, Uchino K, Nakashima H 2010 Plasma Sources Sci. T. 19 045009

    [7]

    Brophy J R, Wilbur P J 1985 AIAA J. 23 1731

    [8]

    Takao Y, Miyamoto T, Yamawaki K, Maeyama T, Nakashima H 2002 Vacuum 65 361

    [9]

    Goebel D M, Wirz R E, Katz I 2007 J. Propul. Power 23 1055

    [10]

    Kitamura S, Miyazaki K, Hayakawa Y, Yoshida H, Akai K 2003 Acta Astronaut 52 20

    [11]

    Hruby V, Martinez-Sanchez M, Bates S, Lorents D 1994 25th AIAA Plasmadynamics and Lasers Conference Colorado, USA June 20-23, 1994 p94-2466-1

    [12]

    Bramanti C, Izzo D, Samaraee T, Walker R, Fearn D 2009 Acta Astronaut 64 735

    [13]

    Walker R, Bramanti C 2006 42nd AIAA/ASME/SAE/ ASEE Joint Propulsion Conference Exhibit California USA, July 9-12, 2006 p2006-4669-1

    [14]

    Sovey J S, Rawlin V K, Patterson M J 2001 J. Propul. Power 17 517

    [15]

    Chen J J, Zhang T P, Jia Y H, Li X P 2012 High Power Laser and Particle Beams 24 2469 (in Chinese)[陈娟娟, 张天平, 贾艳辉, 李小平 2012 强激光与粒子束流 24 2469]

    [16]

    Yasutaka I, Toshiyuki O 2001 Presented at the 27th International Electric Propulsion Conference Pasadena, USA, October 15-19, 2001 p01-101-1

    [17]

    Chen M L, Xia G Q, Mao G W 2014 Acta Phys. Sin. 63 182901 (in Chinese)[陈茂林, 夏广庆, 毛根旺 2014 物理学报 63 182901]

    [18]

    Ren J X, Li J, Xie K 2013 Plasma Sci. Technol. 15 702

    [19]

    Li J, Chu Y C, Cao Y 2012 J. Propul. Technol. 33 131 (in Chinese)[李娟, 楚豫川, 曹勇 2012 推进技术 33 131]

    [20]

    Chen M L, Xia G Q, Xu Z J, Mao G W 2015 Acta Phys. Sin 64 094104 (in Chinese)[陈茂林, 夏广庆, 徐宗琦, 毛根旺 2015 物理学报 64 094104]

    [21]

    Zhou Z C, Wang M, Zhong X Q, Chen J J, Zhang T P 2015 Chin. J. Vacuum Sci. Technol. 35 1088 (in Chinese)[周志成, 王敏, 仲小清, 陈娟娟, 张天平 2015 真空科学与技术学报 35 1088]

    [22]

    Herman D A, Gallimore A D 2013 Presented at the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Joint Propulsion Conferences Florida USA, July 11-14, 2013 pp2004-3958

    [23]

    Zheng M F, Jiang H C 2011 J. Propul. Technol. 32 762 (in Chinese)[郑茂繁, 江豪成 2011 推进技术 32 762]

    [24]

    Jia Y H, Zhang T P, Zheng M F, Li X K 2012 J. Propul. Technol. 33 991 (in Chinese)[贾艳辉, 张天平, 郑茂繁, 李兴坤 2012 推进技术 33 991]

    [25]

    Zhang Z, Tang H B, Ren J X, Zhang Z, Wang J 2016 Rev. Sci. Instrum. 87 113502

  • [1]

    Burak K K, Deborah A L 2017 J. Propul. Power 33 264

    [2]

    Li J X, Wang Z H, Zhang Y B, Fu H M, Liu C R, Krishnaswamy S 2016 J. Propul. Power 32 948

    [3]

    Zhang T P, Wang X Y, Jiang H C 2013 Presented at the 33th International Electric Propulsion Conference Washington, USA, October 6-10, 2013 p2013-48-1

    [4]

    Zhou Z C, Gao J 2015 Spacecraft Engineer. 24 6 (in Chinese)[周志成, 高军 2015 航天器工程 24 6]

    [5]

    Williams L T, Walker M L R 2014 J. Propul. Power 30 645

    [6]

    Yamamoto N, Tomita K, Yamasaki N, Tsuru T, Ezaki T, Kotani Y, Uchino K, Nakashima H 2010 Plasma Sources Sci. T. 19 045009

    [7]

    Brophy J R, Wilbur P J 1985 AIAA J. 23 1731

    [8]

    Takao Y, Miyamoto T, Yamawaki K, Maeyama T, Nakashima H 2002 Vacuum 65 361

    [9]

    Goebel D M, Wirz R E, Katz I 2007 J. Propul. Power 23 1055

    [10]

    Kitamura S, Miyazaki K, Hayakawa Y, Yoshida H, Akai K 2003 Acta Astronaut 52 20

    [11]

    Hruby V, Martinez-Sanchez M, Bates S, Lorents D 1994 25th AIAA Plasmadynamics and Lasers Conference Colorado, USA June 20-23, 1994 p94-2466-1

    [12]

    Bramanti C, Izzo D, Samaraee T, Walker R, Fearn D 2009 Acta Astronaut 64 735

    [13]

    Walker R, Bramanti C 2006 42nd AIAA/ASME/SAE/ ASEE Joint Propulsion Conference Exhibit California USA, July 9-12, 2006 p2006-4669-1

    [14]

    Sovey J S, Rawlin V K, Patterson M J 2001 J. Propul. Power 17 517

    [15]

    Chen J J, Zhang T P, Jia Y H, Li X P 2012 High Power Laser and Particle Beams 24 2469 (in Chinese)[陈娟娟, 张天平, 贾艳辉, 李小平 2012 强激光与粒子束流 24 2469]

    [16]

    Yasutaka I, Toshiyuki O 2001 Presented at the 27th International Electric Propulsion Conference Pasadena, USA, October 15-19, 2001 p01-101-1

    [17]

    Chen M L, Xia G Q, Mao G W 2014 Acta Phys. Sin. 63 182901 (in Chinese)[陈茂林, 夏广庆, 毛根旺 2014 物理学报 63 182901]

    [18]

    Ren J X, Li J, Xie K 2013 Plasma Sci. Technol. 15 702

    [19]

    Li J, Chu Y C, Cao Y 2012 J. Propul. Technol. 33 131 (in Chinese)[李娟, 楚豫川, 曹勇 2012 推进技术 33 131]

    [20]

    Chen M L, Xia G Q, Xu Z J, Mao G W 2015 Acta Phys. Sin 64 094104 (in Chinese)[陈茂林, 夏广庆, 徐宗琦, 毛根旺 2015 物理学报 64 094104]

    [21]

    Zhou Z C, Wang M, Zhong X Q, Chen J J, Zhang T P 2015 Chin. J. Vacuum Sci. Technol. 35 1088 (in Chinese)[周志成, 王敏, 仲小清, 陈娟娟, 张天平 2015 真空科学与技术学报 35 1088]

    [22]

    Herman D A, Gallimore A D 2013 Presented at the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Joint Propulsion Conferences Florida USA, July 11-14, 2013 pp2004-3958

    [23]

    Zheng M F, Jiang H C 2011 J. Propul. Technol. 32 762 (in Chinese)[郑茂繁, 江豪成 2011 推进技术 32 762]

    [24]

    Jia Y H, Zhang T P, Zheng M F, Li X K 2012 J. Propul. Technol. 33 991 (in Chinese)[贾艳辉, 张天平, 郑茂繁, 李兴坤 2012 推进技术 33 991]

    [25]

    Zhang Z, Tang H B, Ren J X, Zhang Z, Wang J 2016 Rev. Sci. Instrum. 87 113502

  • [1] 付瑜亮, 张思远, 杨谨远, 孙安邦, 王亚楠. 微波离子推力器中磁场发散区电子加热模式研究. 物理学报, 2024, 73(9): 095203. doi: 10.7498/aps.73.20240017
    [2] 付瑜亮, 杨涓, 夏旭, 孙安邦. 放电室长度对电子回旋共振离子推力器性能的影响机理. 物理学报, 2023, 72(17): 175204. doi: 10.7498/aps.72.20230719
    [3] 李建鹏, 靳伍银, 赵以德. 多模式离子推力器输入参数设计及工作特性研究. 物理学报, 2022, 71(7): 075203. doi: 10.7498/aps.71.20212045
    [4] 李建鹏, 赵以德, 靳伍银, 张兴民, 李娟, 王彦龙. 多模式离子推力器放电室和栅极设计及其性能实验研究. 物理学报, 2022, 71(19): 195203. doi: 10.7498/aps.71.20220720
    [5] 李建鹏, 靳伍银, 赵以德. 加速电压和阳极流率对离子推力器性能的影响. 物理学报, 2022, 71(1): 015202. doi: 10.7498/aps.71.20211316
    [6] 邹雄, 漆小波, 张涛先, 高章帆, 黄卫星. 惯性约束聚变靶丸内杂质气体抽空流洗过程的数值模拟. 物理学报, 2021, 70(7): 075207. doi: 10.7498/aps.70.20201491
    [7] 叶欣, 单彦广. 疏水表面振动液滴模态演化与流场结构的数值模拟. 物理学报, 2021, 70(14): 144701. doi: 10.7498/aps.70.20210161
    [8] 陈国华, 石科军, 储进科, 吴昊, 周池楼, 肖舒. 环形磁场金属等离子体源冷却流场的数值模拟与优化. 物理学报, 2021, 70(7): 075203. doi: 10.7498/aps.70.20201368
    [9] 左娟莉, 杨泓, 魏炳乾, 侯精明, 张凯. 气力提升系统气液两相流数值模拟分析. 物理学报, 2020, 69(6): 064705. doi: 10.7498/aps.69.20191755
    [10] 姜春华, 赵正予. 化学复合率对激发赤道等离子体泡影响的数值模拟. 物理学报, 2019, 68(19): 199401. doi: 10.7498/aps.68.20190173
    [11] 喻明浩. 非平衡感应耦合等离子体流场与电磁场作用机理的数值模拟. 物理学报, 2019, 68(18): 185202. doi: 10.7498/aps.68.20190865
    [12] 于博, 张岩, 贺伟国, 杭观荣, 康小录, 赵青. 超声波电喷推力器羽流中和特性研究. 物理学报, 2018, 67(4): 040201. doi: 10.7498/aps.67.20171972
    [13] 成玉国, 夏广庆. 感应式脉冲推力器中等离子体加速数值研究. 物理学报, 2017, 66(7): 075204. doi: 10.7498/aps.66.075204
    [14] 龙建飞, 张天平, 李娟, 贾艳辉. 离子推力器栅极透过率径向分布特性研究. 物理学报, 2017, 66(16): 162901. doi: 10.7498/aps.66.162901
    [15] 陈茂林, 夏广庆, 徐宗琦, 毛根旺. 栅极热变形对离子推力器工作过程影响分析. 物理学报, 2015, 64(9): 094104. doi: 10.7498/aps.64.094104
    [16] 陈茂林, 夏广庆, 毛根旺. 多模式离子推力器栅极系统三维粒子模拟仿真. 物理学报, 2014, 63(18): 182901. doi: 10.7498/aps.63.182901
    [17] 靳冬欢, 刘文广, 陈星, 陆启生, 赵伊君. 三股互击式喷注器及燃烧室流场的数值模拟. 物理学报, 2012, 61(6): 064206. doi: 10.7498/aps.61.064206
    [18] 庞学霞, 邓泽超, 贾鹏英, 梁伟华. 大气等离子体中氮氧化物粒子行为的数值模拟. 物理学报, 2011, 60(12): 125201. doi: 10.7498/aps.60.125201
    [19] 郭文琼, 周晓军, 张雄军, 隋 展, 吴登生. 等离子体电极普克尔盒电光开关单脉冲过程数值模拟. 物理学报, 2006, 55(7): 3519-3523. doi: 10.7498/aps.55.3519
    [20] 袁行球, 陈重阳, 李 辉, 赵太泽, 郭文康, 须 平. 电子束离子阱中高价态离子演化过程的数值模拟. 物理学报, 2003, 52(8): 1906-1910. doi: 10.7498/aps.52.1906
计量
  • 文章访问数:  7418
  • PDF下载量:  204
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-02
  • 修回日期:  2017-10-25
  • 刊出日期:  2019-01-20

/

返回文章
返回