搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

频差偏差对全视场外差测量精度的影响

伍洲 张文喜 相里斌 李杨 孔新新

引用本文:
Citation:

频差偏差对全视场外差测量精度的影响

伍洲, 张文喜, 相里斌, 李杨, 孔新新

Effect of frequency difference deviation on full-field heterodyne measurement accuracy

Wu Zhou, Zhang Wen-Xi, Xiang Li-Bin, Li Yang, Kong Xin-Xin
PDF
导出引用
  • 根据全视场外差测量的相关理论,推导了频差偏差与仪器测量精度的相互关系.分析了频差大小、频差偏差、采集初始时间、初始相位、采样频率和采样周期数等相关参数对测量精度的影响.研究结果可以作为全视场外差测量设备设计、参数选取的理论依据;并给出了通过合理选择采样时间和采样帧数提高测量精度的一种方法.
    With the advantages of high precision and great environmental adaptability, laser heterodyne interferometry has been successfullyused in some areas, such as measuring distance and angle and other point detection. The Hertz-level frequency-shifting technology greatly improves the accuracy and stability of surface measurement and extends its application to the areas of array detection, such as three-dimensional topography measurement, smooth surface measurement, digital holography, speckle measurement, etc. The frequency difference of heterodyne interferometry is realized by acousto-optic frequency shifter under the control of two radio frequency signals each with a fixed frequency value. However, a deviation of the real value from the design value of frequency always exists, which is referred to as frequency difference deviation. It causes the heterodyne frequency and the frame rate of the array detector to be unable to be strictly matched, thus affecting the improvement of measurement accuracy. According to the theory of full-field heterodyne measurement, we derive the relationship between frequency difference deviation and measurement accuracy of the heterodyne measurement instrument, and analyze the effects of relevant parameters including the value of frequency difference, frequency deviation, initial sampling time, initial phase, sampling frequency, and sampling cycles on measurement accuracy. A method of improving the measurement accuracy is proposed by reasonably selecting the sampling time and frame number. Analysis shows that the initial sampling time and initial phase have the same effect on the measurement accuracy. With the reasonable choosing of measurement parameters and processing methods, the measurement accuracy of the instrument could be greatly improved. In addition, the peak value of full-field heterodyne measurement error is linearly related to the frequency difference deviation. In the case of a certain frequency difference deviation, the instrument could achieve a higher measurement accuracy with greater frequency difference, but requires a higher frame rate of detector at the same time. As a result, designers should choose an appropriate value of frequency difference for measurement instrument. Furthermore, increasing the sampling frequency could also improve the measurement accuracy. Actually, if sampling frames are more than fifteen in a single cycle, the improvement of measurement accuracy would be limited. Multi-period sampling has little effect on measurement error caused by frequency difference deviation, and the measurement error is the limiting value of measurement accuracy that the instrument could reach. Therefore, this study could be used as a theoretical basis of the design and parameter selection and also the measurement accuracy analysis for full-field heterodyne measurement instrument development.
      通信作者: 张文喜, zhangwenxi@aoe.ac.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号:61605217)和中国科学院青年创新促进会(批准号:2015127)资助的课题.
      Corresponding author: Zhang Wen-Xi, zhangwenxi@aoe.ac.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61605217) and the Youth Innovation Promotion Association, Chinese Academy of Sciences (Grant No. 2015127).
    [1]

    Wu G, Takahashi M, Arai K, Inaba H, Minoshima K 2013 Sci. Rep. 3 1894

    [2]

    Torre R, Taschin A, Sampoli M 2001 Phys. Rev. E 64 061504

    [3]

    Wang G C, Yan S H, Yang J, Lin C B, Yang D X, Zou P F 2013 Acta Phys. Sin. 62 070601 (in Chinese)[王国超, 颜树华, 杨俊, 林存宝, 杨东兴, 邹鹏飞 2013 物理学报 62 070601]

    [4]

    Yuichi K, Daisuke, Tomohiro K, Toyohiko Y 2010 Opt. Lett. 35 101548

    [5]

    Tomasz T, Romuald J 2001 Proc. SPIE 4190 123

    [6]

    Kong X X, Xiang L B, Zhang W X, Wu Z, Li Y, L X Y 2017 Proc. SPIE 10329 103292E-2

    [7]

    Mark C P, Chung W S, Michael G S 2004 Opt. Lett. 29 111200

    [8]

    Patrick E, Michael J C, Fereydoun L, Maurice P W 2006 Opt. Lett. 31 070912

    [9]

    Wu Z, Zhang W X, Xiang L B, Kong X X 2017 Proc. SPIE 10329 1032905

    [10]

    Clerc F L, Collot L, Gross M 2000 Opt. Lett. 25 100716

    [11]

    Gross M, Goy P, Forget B C, Atlan M, Ramaz F, Boccara A C, Dunn A K 2005 Opt. Lett. 30 111357

    [12]

    Atlan M, Gross M 2007 Opt. Lett. 32 111456

    [13]

    Michel G 2016 Appl. Opt. 55 0300A8

    [14]

    Michel G 2017 Appl. Opt. 56 071846

    [15]

    Dario D, Alexey B, Daniel A, Michel G 2016 Opt. Express 24 26887

    [16]

    Mauro V A, Fereydoun L, Maurice P W, Michael J C 2007 Optics and Lasers in Engineering 45 677

    [17]

    Liao L, Yi W M, Yang Z H, Wu G H 2016 Acta Phys. Sin. 65 140601 (in Chinese)[廖磊, 易旺民, 杨再华, 吴冠豪 2016 物理学报 65 140601]

    [18]

    Li C Q, Wang T F, Zhang H Y, Xie J J, Liu L S, Guo J 2016 Acta Phys. Sin. 65 084206 (in Chinese)[李成强, 王挺峰, 张合勇, 谢京江, 刘立生, 郭劲 2016 物理学报 65 084206]

    [19]

    He Y Z, Zhao S J, Wei H Y, Li Y 2016 Acta Phys. Sin. 65 084206 (in Chinese)[贺寅竹, 赵世杰, 尉昊赟, 李岩 2016 物理学报 65 084206]

    [20]

    Holmes R B, Ma S, Bhowmik A, Greninger C 1996 J. Opt. Soc. Am. A 13 351

    [21]

    Zhang W X, Xiang L B, Kong X X, Li Y, Wu Z, Zhou Z S 2013 Acta Phys. Sin. 62 164203 (in Chinese)[张文喜, 相里斌, 孔新新, 李杨, 伍洲, 周志盛 2013 物理学报 62 164203]

  • [1]

    Wu G, Takahashi M, Arai K, Inaba H, Minoshima K 2013 Sci. Rep. 3 1894

    [2]

    Torre R, Taschin A, Sampoli M 2001 Phys. Rev. E 64 061504

    [3]

    Wang G C, Yan S H, Yang J, Lin C B, Yang D X, Zou P F 2013 Acta Phys. Sin. 62 070601 (in Chinese)[王国超, 颜树华, 杨俊, 林存宝, 杨东兴, 邹鹏飞 2013 物理学报 62 070601]

    [4]

    Yuichi K, Daisuke, Tomohiro K, Toyohiko Y 2010 Opt. Lett. 35 101548

    [5]

    Tomasz T, Romuald J 2001 Proc. SPIE 4190 123

    [6]

    Kong X X, Xiang L B, Zhang W X, Wu Z, Li Y, L X Y 2017 Proc. SPIE 10329 103292E-2

    [7]

    Mark C P, Chung W S, Michael G S 2004 Opt. Lett. 29 111200

    [8]

    Patrick E, Michael J C, Fereydoun L, Maurice P W 2006 Opt. Lett. 31 070912

    [9]

    Wu Z, Zhang W X, Xiang L B, Kong X X 2017 Proc. SPIE 10329 1032905

    [10]

    Clerc F L, Collot L, Gross M 2000 Opt. Lett. 25 100716

    [11]

    Gross M, Goy P, Forget B C, Atlan M, Ramaz F, Boccara A C, Dunn A K 2005 Opt. Lett. 30 111357

    [12]

    Atlan M, Gross M 2007 Opt. Lett. 32 111456

    [13]

    Michel G 2016 Appl. Opt. 55 0300A8

    [14]

    Michel G 2017 Appl. Opt. 56 071846

    [15]

    Dario D, Alexey B, Daniel A, Michel G 2016 Opt. Express 24 26887

    [16]

    Mauro V A, Fereydoun L, Maurice P W, Michael J C 2007 Optics and Lasers in Engineering 45 677

    [17]

    Liao L, Yi W M, Yang Z H, Wu G H 2016 Acta Phys. Sin. 65 140601 (in Chinese)[廖磊, 易旺民, 杨再华, 吴冠豪 2016 物理学报 65 140601]

    [18]

    Li C Q, Wang T F, Zhang H Y, Xie J J, Liu L S, Guo J 2016 Acta Phys. Sin. 65 084206 (in Chinese)[李成强, 王挺峰, 张合勇, 谢京江, 刘立生, 郭劲 2016 物理学报 65 084206]

    [19]

    He Y Z, Zhao S J, Wei H Y, Li Y 2016 Acta Phys. Sin. 65 084206 (in Chinese)[贺寅竹, 赵世杰, 尉昊赟, 李岩 2016 物理学报 65 084206]

    [20]

    Holmes R B, Ma S, Bhowmik A, Greninger C 1996 J. Opt. Soc. Am. A 13 351

    [21]

    Zhang W X, Xiang L B, Kong X X, Li Y, Wu Z, Zhou Z S 2013 Acta Phys. Sin. 62 164203 (in Chinese)[张文喜, 相里斌, 孔新新, 李杨, 伍洲, 周志盛 2013 物理学报 62 164203]

  • [1] 徐靖翔, 孔明, 许新科. 基于旋转不变技术信号参数估计的激光扫频干涉测量方法. 物理学报, 2021, 70(3): 034205. doi: 10.7498/aps.70.20201135
    [2] 战海洋, 邢飞, 张利. 面向近原子尺度制造的光学测量精度极限分析. 物理学报, 2021, 70(6): 060703. doi: 10.7498/aps.70.20201924
    [3] 潘浩, 曲兴华, 史春钊, 李雅婷, 张福民. 激光调频连续波测距的精度评定方法研究. 物理学报, 2018, 67(9): 090201. doi: 10.7498/aps.67.20180142
    [4] 李丽君, 马茜, 曹茂永, 宫顺顺, 李文宪, 丁小哲, 刘仪琳, 徐琳, 刘倩. 全光纤干涉式结构中传感模式仿真分析. 物理学报, 2017, 66(22): 220202. doi: 10.7498/aps.66.220202
    [5] 钱鸿鹄, 孟炳寰, 袁银麟, 洪津, 张苗苗, 李双, 裘桢炜. 星载多角度偏振成像仪非偏通道全视场偏振效应测量及误差分析. 物理学报, 2017, 66(10): 100701. doi: 10.7498/aps.66.100701
    [6] 刘国栋, 许新科, 刘炳国, 陈凤东, 胡涛, 路程, 甘雨. 基于振动抑制高精度宽带激光扫频干涉测量方法. 物理学报, 2016, 65(20): 209501. doi: 10.7498/aps.65.209501
    [7] 孟祥松, 张福民, 曲兴华. 基于重采样技术的调频连续波激光绝对测距高精度及快速测量方法研究. 物理学报, 2015, 64(23): 230601. doi: 10.7498/aps.64.230601
    [8] 时光, 张福民, 曲兴华, 孟祥松. 高分辨率调频连续波激光绝对测距研究. 物理学报, 2014, 63(18): 184209. doi: 10.7498/aps.63.184209
    [9] 文峰, 武保剑, 李智, 李述标. 基于全光纤萨格纳克干涉仪的温度不敏感磁场测量. 物理学报, 2013, 62(13): 130701. doi: 10.7498/aps.62.130701
    [10] 王国超, 颜树华, 杨俊, 林存宝, 杨东兴, 邹鹏飞. 一种双光梳多外差大尺寸高精度绝对测距新方法的理论分析. 物理学报, 2013, 62(7): 070601. doi: 10.7498/aps.62.070601
    [11] 祝宝辉, 张淳民, 简小华, 曾文锋. 时空混合调制型偏振干涉成像光谱仪的全视场偏振信息探测研究. 物理学报, 2012, 61(9): 090701. doi: 10.7498/aps.61.090701
    [12] 张丽琼, 李岩, 朱敏昊, 张继涛. 法-珀干涉绝对距离测量中的声光移频器双通道配置方法. 物理学报, 2012, 61(18): 180701. doi: 10.7498/aps.61.180701
    [13] 穆廷魁, 张淳民, 任文艺, 张霖, 祝宝辉. 偏振干涉成像光谱仪的视场展宽设计与分析. 物理学报, 2011, 60(7): 070704. doi: 10.7498/aps.60.070704
    [14] 侯建平, 宁韬, 盖双龙, 李鹏, 郝建苹, 赵建林. 基于光子晶体光纤模间干涉的折射率测量灵敏度分析. 物理学报, 2010, 59(7): 4732-4737. doi: 10.7498/aps.59.4732
    [15] 白福忠, 饶长辉. 针孔直径对自参考干涉波前传感器测量精度的影响. 物理学报, 2010, 59(6): 4056-4064. doi: 10.7498/aps.59.4056
    [16] 张淳民, 刘宁, 吴福全. 偏振干涉成像光谱仪中格兰-泰勒棱镜全视场角透过率的分析与计算. 物理学报, 2010, 59(2): 949-957. doi: 10.7498/aps.59.949
    [17] 李彦超, 章亮, 杨彦玲, 高龙, 徐博, 王春晖. 多光束激光外差高精度测量玻璃厚度的方法. 物理学报, 2009, 58(8): 5473-5478. doi: 10.7498/aps.58.5473
    [18] 张宏超, 陆建, 倪晓武. 干涉法诊断由纳秒激光诱导产生的大气等离子体的电子密度. 物理学报, 2009, 58(6): 4034-4040. doi: 10.7498/aps.58.4034
    [19] 阮 锴, 张淳民, 赵葆常. 高层大气风场探测改型大光程差Sagnac干涉仪全视场角光程差与横向剪切量的精确计算. 物理学报, 2008, 57(9): 5435-5441. doi: 10.7498/aps.57.5435
    [20] 张春平, 张光寅, 吕可诚, 巴恩旭, 刘治国. 激光模简并解除及频差理论分析. 物理学报, 1983, 32(6): 723-729. doi: 10.7498/aps.32.723
计量
  • 文章访问数:  6338
  • PDF下载量:  154
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-14
  • 修回日期:  2017-10-20
  • 刊出日期:  2019-01-20

/

返回文章
返回