搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

温稠密物质交流电导率单发测量的时间精度提升与分析

肖凡 王小伟 王力 王家灿 孙旭 郑志刚 范晓慧 张栋文 赵增秀

引用本文:
Citation:

温稠密物质交流电导率单发测量的时间精度提升与分析

肖凡, 王小伟, 王力, 王家灿, 孙旭, 郑志刚, 范晓慧, 张栋文, 赵增秀

Improvement and analysis of time accuracy in single-shot measurement of ac conductivity of warm dense matter

XIAO Fan, WANG Xiaowei, WANG Li, WANG Jiacan, SUN Xu, ZHENG Zhigang, FAN Xiaohui, ZHANG Dongwen, ZHAO Zengxiu
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 基于空间啁啾的单发泵浦-探测技术是探究物质在强激光泵浦下达到温稠密态过程中电子非平衡动力学的重要手段, 其时间分辨率已达到百飞秒量级. 本文详细阐述了温稠密物质交流电导率的空间啁啾单发测量原理及高时间分辨实验装置, 并对影响系统时间分辨率的关键因素进行深入剖析. 分析表明, 基于超短泵浦-探测脉冲, 该系统可实现13.8 fs的时间分辨率. 然而, 在实际实验中, 延时零点的精确标定、成像系统的景深限制以及低通滤波效应等因素, 均会对系统的时间分辨能力产生显著影响. 本研究不仅为提升温稠密物质交流电导率单发测量的时间精度提供了理论依据和实践指导, 而且为探索强场条件下材料的超快动力学过程奠定了坚实的技术基础.
    The spatial chirp based single-shot pump-probe technique represents a pivotal technology for studying electron non-equilibrium dynamics in warm dense matter created with intense laser pulses. Notably, its time resolution can reach tens of femtoseconds. In this work, we introduce the single-shot measurement technique of ac conductivity of warm dense matter, as well as a detailed account of the experimental setup. In addition, the main factors limiting the time resolution of the system are discussed in depth. We show the system can achieve a resolution of 13.8 femtoseconds. Nevertheless, during practical application, several aspects, namely the calibration of the zero-delay, the depth of field of the imaging system, and the low-pass filtering effect inherent in the imaging system, will exert a substantial influence on the time-resolution. This research has important reference for enhancing the time accuracy of single-shot measurement of ac conductivity of warm dense matter. Moreover, it serves as a potent tool for the in-depth study of the ultrafast dynamic processes of materials under strong-field conditions.
  • 图 1  WDM交流电导率时间演化的单发测量原理 (a) 实验系统示意图, 其中CM1和CM2为两个柱面镜, RCam和Tcam分别为反射光成像相机和透射光成像相机; (b) 空间啁啾把不同延时映射在不同空间位置上的原理

    Fig. 1.  Single-shot measurement principle for time-dependent AC conductivity evolution in WDM: (a) Schematic of the experimental system, where CM1 and CM2 are two cylindrical mirrors, and RCam and Tcam are the reflection light imaging camera and transmission light imaging camera, respectively; (b) principle of spatial chirp which maps different time delays to different spatial positions.

    图 2  成像分辨率与延时标定 (a) USAF 1951分辨率板的像, 成像系统在水平方向能分辨至第7组第1个元素 (128 lp/mm); (b) 在偏振选通法(PG)中测得的透射光光强变化($ \Delta I $)随空间的分布; (c) 利用PG标定延时, 图中9条曲线代表9个间隔为33.3 fs的不同延时点测得的$ \Delta I $的空间分布

    Fig. 2.  Imaging resolution and time delay calibration: (a) Image of the USAF 1951 resolution target, where the imaging system resolves down to the Group 7 Element 1 (128 lp/mm) in the horizontal direction; (b) spatial distribution of transmitted light intensity variation (∆I) measured via the polarization gating (PG) method; (c) time delay calibration using PG, where the 9 curves represents 9 different measurements of ∆I vs. space with delay increment of 33.3 fs.

    图 3  石英片厚度对延时零点标定精度的影响, 即探测光和泵浦光在融石片不同厚度的地方具有不同的延时

    Fig. 3.  Effect of quartz plate thickness on the accuracy of the delay zero point. Probe light and pump light experience different delays at different thicknesses of the quartz plate.

    图 4  样品平面与标定平面不重合时带来的延时误差, 其中O点是利用偏振门方案标定的延时零点, A点是透射相机“认为”的样品上的延时零点, B点是反射相机“认为”的样品上的延时零点

    Fig. 4.  Delay error introduced when sample plane and calibration plane do not coincide. Point O is the delay zero point calibrated using the polarization gate method, Point A is the delay zero point on the sample perceived by the transmission camera, Point B is the delay zero point on the sample perceived by the reflection camera.

    图 5  突变结构的成像模拟 (a)一个瞬时突变结构(real)经过成像系统后的像(imaged)带有衍射振荡结构; (b) 5—20 fs缓变结构的像

    Fig. 5.  Imaging simulation of abrupt structures: (a) An instantaneous abrupt structure (real) after passing through the imaging system, the image (imaged) exhibits a diffractive oscillatory structure; (b) images of 5, 10, 12, 15 and 20 fs gradually varying structures.

    表 1  单发测量温稠密交流电导率演化的误差分析

    Table 1.  Error analysis of conductivity evolution in single-shot measurements of warm dense matter.

    系统物理量 误差来源 依赖关系 典型值
    系统时间分辨率$ \Delta \tau $泵浦光脉宽$ {\tau }_{1} $$ \Delta \tau =\sqrt{{\tau }_{1}^{2}+{\tau }_{2}^{2}+{\left(\chi {{\Delta }}x\right)}^{2}} $$ {\tau }_{1}=9.7{\mathrm{f}}{\mathrm{s}}; {\tau }_{2}=5{\mathrm{f}}{\mathrm{s}} $
    $ \chi =2.1{\mathrm{ }}{\mathrm{f}}{\mathrm{s}}/\text{μm} $,
    $ \Delta x=4\text{μm} $
    $ \Delta \tau =13.8{\mathrm{f}}{\mathrm{s}} $
    探测光脉宽$ {\tau }_{2} $
    成像系统分辨率$ \Delta x $
    延时零点标定误差$ \Delta {\tau }_{0} $融石英片厚度$ L $$ \Delta {\tau }_{0}\left[{\mathrm{f}}{\mathrm{s}}\right]\approx 0.42 L\left[\text{μm}\right] $$ L=30\text{ μm} $
    $ \Delta {\tau }_{0}=12.7\;{\mathrm{f}}{\mathrm{s}} $
    透射延时零点定位误差$ \Delta {\tau }_{0 T} $成像定位精度$ d $$ {\Delta \tau }_{0 T}\left[{\mathrm{f}}{\mathrm{s}}\right]\approx -0.72 d\left[\text{μm}\right] $,$ d=35\text{ μm} $
    $ \Delta {\tau }_{0 T}=25.2{\mathrm{f}}{\mathrm{s}} $
    反射延时零点定位误差$ \Delta {\tau }_{0 R} $$ {\Delta \tau }_{0 R}\left[{\mathrm{f}}{\mathrm{s}}\right]\approx 0.038 d\left[\text{μm}\right] $$ d=35\text{ μm} $
    $ \Delta {\tau }_{0 T}=1.33{\mathrm{f}}{\mathrm{s}} $
    动力学突变的时间分辨率$ \Delta {\tau }_{{\mathrm{f}}} $成像系统数值孔径$ {\mathrm{N}}{\mathrm{A}} $$ \Delta {\tau }_{{\mathrm{f}}}\propto \dfrac{1}{{\mathrm{N}}{\mathrm{A}}} $$ {\mathrm{N}}{\mathrm{A}}=0.1 $
    $ \Delta {\tau }_{{\mathrm{f}}} > 20{\mathrm{f}}{\mathrm{s}} $
    下载: 导出CSV
  • [1]

    陈其峰, 顾云军, 郑君, 李江涛, 李治国, 权伟龙, 付志坚, 李成军 2017 科学通报 62 812Google Scholar

    Chen Q F, Gu Y J, Zheng J, Li J T, Li Z G, Quan W L, Fu Z J, Li C J 2017 Chin. Sci. Bull. 62 812Google Scholar

    [2]

    Kang D, Dai J 2018 J. Phys. Condens. Matter 30 073002Google Scholar

    [3]

    Ichimaru S 1982 Rev. Mod. Phys. 54 1017Google Scholar

    [4]

    Koenig M, Benuzzi-Mounaix A, Ravasio A, Vinci T, Ozaki N, Lepape S, Batani D, Huser G, Hall T, Hicks D, MacKinnon A, Patel P, Park H S, Boehly T, Borghesi M, Kar S, Romagnani L 2005 Plasma Phys. Control. Fusion 47 B441Google Scholar

    [5]

    Falk K 2018 High Power Laser Sci. Eng. 6 e59Google Scholar

    [6]

    康冬冬, 曾启昱, 张珅, 王小伟, 戴佳钰 2020 强激光与粒子束 32 092006Google Scholar

    Kang D D, Zeng Q Y, Zhang S, Wang X W, Dai J Y 2020 High Power Laser Part. Beams 32 092006Google Scholar

    [7]

    Lee R W, Moon S J, Chung H K, Rozmus W, Baldis H A, Gregori G, Cauble R C, Landen O L, Wark J S, Ng A, Rose S J, Lewis C L, Riley D, Gauthier J C, Audebert P 2003 J. Opt. Soc. Am. B 20 770Google Scholar

    [8]

    Wu D, Yu W, Sheng Z M, Fritzsche S, He X T 2020 Phys. Rev. E 101 051202Google Scholar

    [9]

    Fletcher L B, Lee H J, Döppner T, Galtier E, Nagler B, Heimann P, Fortmann C, LePape S, Ma T, Millot M, Pak A, Turnbull D, Chapman D A, Gericke D O, Vorberger J, White T, Gregori G, Wei M, Barbrel B, Falcone R W, Kao C C, Nuhn H, Welch J, Zastrau U, Neumayer P, Hastings J B, Glenzer S H 2015 Nat. Photonics 9 274Google Scholar

    [10]

    Graziani F, Moldabekov Z, Olson B, Bonitz M 2022 Contrib. Plasma Phys. 62 e202100170Google Scholar

    [11]

    Dornheim T, Böhme M, Kraus D, Döppner T, Preston T R, Moldabekov Z A, Vorberger J 2022 Nat. Commun. 13 7911Google Scholar

    [12]

    Mercadier L, Benediktovitch A, Krušič Š, Kas J J, Schlappa J, Agåker M, Carley R, Fazio G, Gerasimova N, Kim Y Y, Le Guyader L, Mercurio G, Parchenko S, Rehr J J, Rubensson J E, Serkez S, Stransky M, Teichmann M, Yin Z, Žitnik M, Scherz A, Ziaja B, Rohringer N 2024 Nat. Phys. 20 1564Google Scholar

    [13]

    Forsman A, Ng A, Chiu G, More R M 1998 Phys. Rev. E 58 R1248Google Scholar

    [14]

    Ping Y, Correa A A, Ogitsu T, Draeger E, Schwegler E, Ao T, Widmann K, Price D F, Lee E, Tam H, Springer P T, Hanson D, Koslow I, Prendergast D, Collins G, Ng A 2010 High Energy Density Phys. 6 246Google Scholar

    [15]

    Ofori-Okai B K, Descamps A, McBride E E, Mo M Z, Weinmann A, Seipp L E, Ali S J, Chen Z, Fletcher L B, Glenzer S H 2024 Phys. Plasmas 31 042711Google Scholar

    [16]

    Ng A, Sterne P, Hansen S, Recoules V, Chen Z, Tsui Y Y, Wilson B 2016 Phys. Rev. E 94 03321Google Scholar

    [17]

    孙旭, 吴海忠, 王小伟, 吕治辉, 张栋文, 刘东晓, 范伟, 粟敬钦, 周维民, 谷渝秋, 赵增秀, 袁建民 2023 中国激光 50 1714013Google Scholar

    Sun X, Wu H Z, Wang X W, Lü Z H, Zhang D W, Liu D X, Fan W, Su J Q, Zhou W M, Gu Y Q, Zhao Z X, Yuan J M 2023 Chin. J. Lasers 50 1714013Google Scholar

    [18]

    Ofori-Okai B K, Descamps A, Lu J, Seipp L E, Weinmann A, Glenzer S H, Chen Z 2018 Rev. Sci. Instrum. 89 10D109Google Scholar

    [19]

    Ao T, Ping Y, Widmann K, Price D F, Lee E, Tam H, Springer P T, Ng A 2006 Phys. Rev. Lett. 96 055001Google Scholar

    [20]

    Widmann K, Ao T, Foord M E, Price D F, Ellis A D, Springer P T, Ng A 2004 Phys. Rev. Lett. 92 125002Google Scholar

    [21]

    Ping Y, Hanson D, Koslow I, Ogitsu T, Prendergast D, Schwegler E, Collins G, Ng A 2006 Phys. Rev. Lett. 96 255003Google Scholar

    [22]

    Chen Z, Holst B, Kirkwood S E, Sametoglu V, Reid M, Tsui Y Y, Recoules V, Ng A 2013 Phys. Rev. Lett. 110 135001Google Scholar

    [23]

    Chen Z, Sametoglu V, Tsui Y Y, Ao T, Ng A 2012 Phys. Rev. Lett. 108 165001Google Scholar

    [24]

    Dhar L, Fourkas J T, Nelson K A 1994 Opt. Lett. 19 643Google Scholar

    [25]

    Lindenberg A M, Larsson J, Sokolowski-Tinten K, Gaffney K J, Blome C, Synnergren O, Sheppard J, Caleman C, MacPhee A G, Weinstein D, Lowney D P, Allison T K, Matthews T, Falcone R W, Cavalieri A L, Fritz D M, Lee S H, Bucksbaum P H, Reis D A, Rudati J, Fuoss P H, Kao C C, Siddons D P, Pahl R, Als-Nielsen J, Duesterer S, Ischebeck R, Schlarb H, Schulte-Schrepping H, Tschentscher Th, Schneider J, Von Der Linde D, Hignette O, Sette F, Chapman H N, Lee R W, Hansen T N, Techert S, Wark J S, Bergh M, Huldt G, Van Der Spoel D, Timneanu N, Hajdu J, Akre R A, Bong E, Krejcik P, Arthur J, Brennan S, Luening K, Hastings J B 2005 Science 308 392Google Scholar

    [26]

    Chen Z, Hering P, Brown S B, Curry C, Tsui Y Y, Glenzer S H 2016 Rev. Sci. Instrum. 87 11E548Google Scholar

    [27]

    Liu Y Y, Zhao K, He P, Huang H D, Teng H, Wei Z Y 2017 Chin. Phys. Lett. 34 074204Google Scholar

    [28]

    Wang Y, Wang S, Rockwood A, Luther B M, Hollinger R, Curtis A, Calvi C, Menoni C S, Rocca J J 2017 Opt. Lett. 42 3828Google Scholar

    [29]

    Xiao F, Fan X H, Wang L, Zhang D W, Wu J H, Wang X W, Zhao Z X 2020 Chin. Phys. Lett. 37 114202Google Scholar

    [30]

    Chang H T, Zürch M, Kraus P M, Borja L J, Neumark D M, Leone S R 2016 Opt. Lett. 41 5365Google Scholar

    [31]

    Wang X W, Wang L, Xiao F, Zhang D W, Lue Z H, Yuan J M, Zhao Z X 2020 Chin. Phys. Lett. 37 023201Google Scholar

    [32]

    Born M, Wolf E 1999 Principles of Optics (Cambridge: Cambridge University Press

    [33]

    Shillaber C P 1945 Photomicrography: In Theory and Practice (New York: Wiley

  • [1] 张志宇, 赵阳, 青波, 张继彦, 林成亮, 杨国洪, 韦敏习, 熊刚, 吕敏, 黄成武, 朱托, 宋天明, 赵妍, 张玉雪, 张璐, 李丽灵, 杜华冰, 车兴森, 黎宇坤, 詹夏宇, 杨家敏. 基于X射线荧光光谱的温稠密物质离化分布实验方法研究. 物理学报, doi: 10.7498/aps.73.20231216
    [2] 张志宇, 赵阳, 青波, 张继彦, 林成亮, 杨国洪, 韦敏习, 熊刚, 吕敏, 黄成武, 朱托, 宋天明, 赵妍, 张玉雪, 张璐, 李丽灵, 杜华冰, 车兴森, 黎宇坤, 詹夏宇, 杨家敏. 基于X射线荧光光谱的温稠密物质离化分布实验方法研究. 物理学报, doi: 10.7498/aps.72.20231216
    [3] 张志宇, 赵阳, 青波, 张继彦, 马建毅, 林成亮, 杨国洪, 韦敏习, 熊刚, 吕敏, 黄成武, 朱托, 宋天明, 赵妍, 张玉雪, 张璐, 李丽灵, 杜华冰, 车兴森, 黎宇坤, 詹夏宇, 杨家敏. 基于X射线荧光光谱的温稠密物质电子结构密度效应研究. 物理学报, doi: 10.7498/aps.72.20231215
    [4] 李纲, 郭仪, 曾小明, 谢娜, 邵忠喜, 黄征, 孙立, 蒋东镔, 卢峰, 朱斌, 周凯南, 粟敬钦. 皮秒短脉冲光参量啁啾脉冲放大中泵浦信号高精度同步主动控制技术研究. 物理学报, doi: 10.7498/aps.71.20211961
    [5] 金阳, 张平, 李永军, 侯永, 曾交龙, 袁建民. 温稠密物质中不同价态离子分布对X-射线弹性散射光谱计算的影响. 物理学报, doi: 10.7498/aps.70.20201483
    [6] 王天浩, 王坤, 张阅, 姜林村. 温稠密铝等离子体物态方程及其电离平衡研究. 物理学报, doi: 10.7498/aps.69.20191826
    [7] 马桂存, 张其黎, 宋红州, 李琼, 朱希睿, 孟续军. 温稠密物质物态方程的理论研究. 物理学报, doi: 10.7498/aps.66.036401
    [8] 付志坚, 贾丽君, 夏继宏, 唐可, 李召红, 权伟龙, 陈其峰. 温稠密钛电导率计算. 物理学报, doi: 10.7498/aps.65.065201
    [9] 王月, 张凤霞, 王春杰, 高春晓. 高压下ZnSe直流和交流电学性质的研究. 物理学报, doi: 10.7498/aps.63.216401
    [10] 李倩倩, 陈小刚, 包曙红, 郭军明, 翟丽丽. 非线性柱形涂层复合介质有效的直流-交流电响应. 物理学报, doi: 10.7498/aps.62.057201
    [11] 李印峰, 封素芹, 王建勇. 交流电流对铁基纳米晶丝巨磁阻抗效应形貌的影响. 物理学报, doi: 10.7498/aps.60.037306
    [12] 姜洪源, 李姗姗, 侯珍秀, 任玉坤, 孙永军. 非对称电极表面微观形貌对交流电渗流速的影响. 物理学报, doi: 10.7498/aps.60.020702
    [13] 王振东, 梁变, 刘中波, 樊锡君. 飞秒啁啾Gauss型脉冲在稠密Λ型三能级原子介质中的传播. 物理学报, doi: 10.7498/aps.59.7041
    [14] 马 晶, 章若冰, 赵华军, 张伟力, 王清月. 飞秒光参量振荡器中非线性晶体的空间啁啾与角色散. 物理学报, doi: 10.7498/aps.53.2184
    [15] 杨振军, 胡 巍, 傅喜泉, 陆大全, 郑一周. 超短啁啾脉冲光束空间奇异性的形成与消除. 物理学报, doi: 10.7498/aps.52.1920
    [16] 谷云鹏, 宫 野, 孙继忠. 颗粒与交流电弧等离子体温度场的相互作用. 物理学报, doi: 10.7498/aps.48.1078
    [17] 顾国庆, 陶瑞宝. 多孔和复合媒质直流电导率的计算方法(Ⅱ)——应用于各向同性和各向异性复合材料. 物理学报, doi: 10.7498/aps.37.582
    [18] 顾国庆, 陶瑞宝. 多孔和复合媒质直流电导率的计算方法(Ⅰ)——应用于周期性多孔媒质. 物理学报, doi: 10.7498/aps.37.439
    [19] 蒋祺, 龚昌德. 无序层状系统的电导率. 物理学报, doi: 10.7498/aps.37.941
    [20] 钱人元, 金祥凤, 周淑芹. 有机固体薄膜的交流电导. 物理学报, doi: 10.7498/aps.29.992
计量
  • 文章访问数:  370
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-01
  • 修回日期:  2025-03-01
  • 上网日期:  2025-03-07

/

返回文章
返回