搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

温稠密物质交流电导率单发测量的时间精度提升与分析

肖凡 王小伟 王力 王家灿 孙旭 郑志刚 范晓慧 张栋文 赵增秀

引用本文:
Citation:

温稠密物质交流电导率单发测量的时间精度提升与分析

肖凡, 王小伟, 王力, 王家灿, 孙旭, 郑志刚, 范晓慧, 张栋文, 赵增秀

Temporal Accuracy Improvement and Analysis of the Single-shot Measurement System for ac Conductivity of Warm dense Matter

Xiao Fan, Wang Xiao-Wei, Wang Li, Wang Jia-Can, Sun Xu, Zheng Zhi-Gang, Fan Xiao-Hui, Zhang Dong-wen, Zhao Zeng-Xiu
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 基于空间啁啾的单发泵浦-探测技术是探究物质在强激光泵浦下达到温稠密态过程中电子非平衡动力学的重要手段,其时间分辨率已达到百飞秒量级。本文详细阐述了温稠密物质交流电导率的空间啁啾单发测量原理及高时间分辨实验装置,并对影响系统时间分辨率的关键因素进行了深入剖析。分析表明,基于超短泵浦-探测脉冲,该系统可实现13.8 fs的时间分辨率。然而,在实际实验中,延时零点的精确标定、成像系统的景深限制以及低通滤波效应等因素,均会对系统的时间分辨能力产生显著影响。本研究不仅为提升温稠密物质交流电导率单发测量的时间精度提供了理论依据和实践指导,而且为探索强场条件下材料的超快动力学过程奠定了坚实的技术基础。
    The spatial chirp based single-shot pump-probe technique represents a pivotal technology for studying electron non-equilibrium dynamics in ward dense matter created with intense laser pulses. Notably, its time resolution is capable of reaching tens of femtosecond. In this paper, we introduce the single-shot measurement technique of ac conductivity of warm dense matter, along with a detailed account of the experimental setup. In addition, we conduct an in-depth exploration of the principal factors constraining the system's time resolution. We show the system can achieve a resolution of 13.8 femtoseconds. Nevertheless, during practical application, several aspects, namely the calibration of the zero-delay, the depth of field of the imaging system, and the low-pass filtering effect inherent in the imaging system, will exert a substantial influence on the time-resolution. This research holds great significance as a reference for enhancing the time accuracy in single-shot measurements of ac conductivity of warm dense matter. Moreover, it serves as a potent tool for the in-depth study of the ultrafast dynamic processes of materials under strong-field conditions.
  • [1]

    Chen Q, Gu Y, Zheng J, Li J, Li Z, Quan W, Fu Z, Li C 2017Chin. Sci. Bull. 62 812

    [2]

    Kang D, Dai J 2018J. Phys. Condens. Matter 30 073002

    [3]

    Ichimaru S 1982Rev. Mod. Phys. 54 1017

    [4]

    Koenig M, Benuzzi-Mounaix A, Ravasio A, Vinci T, Ozaki N, Lepape S, Batani D, Huser G, Hall T, Hicks D, MacKinnon A, Patel P, Park H S, Boehly T, Borghesi M, Kar S, Romagnani L 2005Plasma Phys. Control. Fusion 47 B441

    [5]

    Falk K 2018High Power Laser Sci. Eng. 6 e59

    [6]

    Kang D, Zeng Q, Zhang S, Wang X, Dai J 2020High Power Laser Part. Beams 32 092006

    [7]

    Lee R W, Moon S J, Chung H K, Rozmus W, Baldis H A, Gregori G, Cauble R C, Landen O L, Wark J S, Ng A, Rose S J, Lewis C L, Riley D, Gauthier J C, Audebert P 2003J. Opt. Soc. Am. B 20 770

    [8]

    Wu D, Yu W, Sheng Z M, Fritzsche S, He X T 2020Phys. Rev. E 101 051202

    [9]

    Fletcher L B, Lee H J, Döppner T, Galtier E, Nagler B, Heimann P, Fortmann C, LePape S, Ma T, Millot M, Pak A, Turnbull D, Chapman D A, Gericke D O, Vorberger J, White T, Gregori G, Wei M, Barbrel B, Falcone R W, Kao C C, Nuhn H, Welch J, Zastrau U, Neumayer P, Hastings J B, Glenzer S H 2015Nat. Photonics 9 274

    [10]

    Graziani F, Moldabekov Z, Olson B, Bonitz M 2022Contrib. Plasma Phys. 62 e202100170

    [11]

    Dornheim T, Böhme M, Kraus D, Döppner T, Preston T R, Moldabekov Z A, Vorberger J 2022Nat. Commun. 13 7911

    [12]

    Mercadier L, Benediktovitch A, Krušič Š, Kas J J, Schlappa J, Agåker M, Carley R, Fazio G, Gerasimova N, Kim Y Y, Le Guyader L, Mercurio G, Parchenko S, Rehr J J, Rubensson J E, Serkez S, Stransky M, Teichmann M, Yin Z, Žitnik M, Scherz A, Ziaja B, Rohringer N 2024Nat. Phys. 20 1564

    [13]

    Forsman A, Ng A, Chiu G, More R M 1998Phys. Rev. E 58 R1248

    [14]

    Ping Y, Correa A A, Ogitsu T, Draeger E, Schwegler E, Ao T, Widmann K, Price D F, Lee E, Tam H, Springer P T, Hanson D, Koslow I, Prendergast D, Collins G, Ng A 2010High Energy Density Phys. 6 246

    [15]

    Ofori-Okai B K, Descamps A, McBride E E, Mo M Z, Weinmann A, Seipp L E, Ali S J, Chen Z, Fletcher L B, Glenzer S H 2024Phys. Plasmas 31 042711

    [16]

    Ng A, Sterne P, Hansen S, Recoules V, Chen Z, Tsui Y Y, Wilson B 2016Phys. Rev. E 94 4

    [17]

    Sun X, Wu H, Wang X, Lü Z, Zhang D, Liu D, Fan W, Su ingqin, Zhou W, Gu Y, Zhao Z, Yuan J 2023Chin. J. Lasers 50 1714013

    [18]

    Ofori-Okai B K, Descamps A, Lu J, Seipp L E, Weinmann A, Glenzer S H, Chen Z 2018Rev. Sci. Instrum. 89 10D109

    [19]

    Ao T, Ping Y, Widmann K, Price D F, Lee E, Tam H, Springer P T, Ng A 2006Phys. Rev. Lett. 96 1

    [20]

    Widmann K, Ao T, Foord M E, Price D F, Ellis A D, Springer P T, Ng A 2004Phys. Rev. Lett. 92 10

    [21]

    Ping Y, Hanson D, Koslow I, Ogitsu T, Prendergast D, Schwegler E, Collins G, Ng A 2006Phys. Rev. Lett. 96 255003

    [22]

    Chen Z, Holst B, Kirkwood S E, Sametoglu V, Reid M, Tsui Y Y, Recoules V, Ng A 2013Phys. Rev. Lett. 110 135001

    [23]

    Chen Z, Sametoglu V, Tsui Y Y, Ao T, Ng A 2012Phys. Rev. Lett. 108 1

    [24]

    Dhar L, Fourkas J T, Nelson K A 1994Opt. Lett. 19 643

    [25]

    Lindenberg A M, Larsson J, Sokolowski-Tinten K, Gaffney K J, Blome C, Synnergren O, Sheppard J, Caleman C, MacPhee A G, Weinstein D, Lowney D P, Allison T K, Matthews T, Falcone R W, Cavalieri A L, Fritz D M, Lee S H, Bucksbaum P H, Reis D A, Rudati J, Fuoss P H, Kao C C, Siddons D P, Pahl R, Als-Nielsen J, Duesterer S, Ischebeck R, Schlarb H, Schulte-Schrepping H, Tschentscher Th, Schneider J, Von Der Linde D, Hignette O, Sette F, Chapman H N, Lee R W, Hansen T N, Techert S, Wark J S, Bergh M, Huldt G, Van Der Spoel D, Timneanu N, Hajdu J, Akre R A, Bong E, Krejcik P, Arthur J, Brennan S, Luening K, Hastings J B 2005Science 308 392

    [26]

    Chen Z, Hering P, Brown S B, Curry C, Tsui Y Y, Glenzer S H 2016Rev. Sci. Instrum. 87

    [27]

    Liu Y Y, Zhao K, He P, Huang H D, Teng H, Wei Z Y 2017Chin. Phys. Lett. 34 074204

    [28]

    Wang Y, Wang S, Rockwood A, Luther B M, Hollinger R, Curtis A, Calvi C, Menoni C S, Rocca J J 2017Opt. Lett. 42 3828

    [29]

    Xiao F, Fan X, Wang L, Zhang D, Wu J, Wang X, Zhao Z 2020Chin. Phys. Lett. 37 114202

    [30]

    Chang H T, Zürch M, Kraus P M, Borja L J, Neumark D M, Leone S R 2016Opt. Lett. 41 5365

    [31]

    Wang X, Wang L, Xiao F, Zhang D, Lue Z, Yuan J, Zhao Z 2020Chin. Phys. Lett. 37 023201

    [32]

    Shillaber C P 1945 Photomicrography : in theory and practice. (New York: Wiley)

    [33]

    Born M, Wolf E 1999 Principles of Optics (Cambridge: Cambridge University Press)

  • [1] 张志宇, 赵阳, 青波, 张继彦, 林成亮, 杨国洪, 韦敏习, 熊刚, 吕敏, 黄成武, 朱托, 宋天明, 赵妍, 张玉雪, 张璐, 李丽灵, 杜华冰, 车兴森, 黎宇坤, 詹夏宇, 杨家敏. 基于X射线荧光光谱的温稠密物质离化分布实验方法研究. 物理学报, doi: 10.7498/aps.73.20231216
    [2] 张志宇, 赵阳, 青波, 张继彦, 林成亮, 杨国洪, 韦敏习, 熊刚, 吕敏, 黄成武, 朱托, 宋天明, 赵妍, 张玉雪, 张璐, 李丽灵, 杜华冰, 车兴森, 黎宇坤, 詹夏宇, 杨家敏. 基于X射线荧光光谱的温稠密物质离化分布实验方法研究. 物理学报, doi: 10.7498/aps.72.20231216
    [3] 张志宇, 赵阳, 青波, 张继彦, 马建毅, 林成亮, 杨国洪, 韦敏习, 熊刚, 吕敏, 黄成武, 朱托, 宋天明, 赵妍, 张玉雪, 张璐, 李丽灵, 杜华冰, 车兴森, 黎宇坤, 詹夏宇, 杨家敏. 基于X射线荧光光谱的温稠密物质电子结构密度效应研究. 物理学报, doi: 10.7498/aps.72.20231215
    [4] 李纲, 郭仪, 曾小明, 谢娜, 邵忠喜, 黄征, 孙立, 蒋东镔, 卢峰, 朱斌, 周凯南, 粟敬钦. 皮秒短脉冲光参量啁啾脉冲放大中泵浦信号高精度同步主动控制技术研究. 物理学报, doi: 10.7498/aps.71.20211961
    [5] 金阳, 张平, 李永军, 侯永, 曾交龙, 袁建民. 温稠密物质中不同价态离子分布对X-射线弹性散射光谱计算的影响. 物理学报, doi: 10.7498/aps.70.20201483
    [6] 王天浩, 王坤, 张阅, 姜林村. 温稠密铝等离子体物态方程及其电离平衡研究. 物理学报, doi: 10.7498/aps.69.20191826
    [7] 马桂存, 张其黎, 宋红州, 李琼, 朱希睿, 孟续军. 温稠密物质物态方程的理论研究. 物理学报, doi: 10.7498/aps.66.036401
    [8] 付志坚, 贾丽君, 夏继宏, 唐可, 李召红, 权伟龙, 陈其峰. 温稠密钛电导率计算. 物理学报, doi: 10.7498/aps.65.065201
    [9] 王月, 张凤霞, 王春杰, 高春晓. 高压下ZnSe直流和交流电学性质的研究. 物理学报, doi: 10.7498/aps.63.216401
    [10] 李倩倩, 陈小刚, 包曙红, 郭军明, 翟丽丽. 非线性柱形涂层复合介质有效的直流-交流电响应. 物理学报, doi: 10.7498/aps.62.057201
    [11] 李印峰, 封素芹, 王建勇. 交流电流对铁基纳米晶丝巨磁阻抗效应形貌的影响. 物理学报, doi: 10.7498/aps.60.037306
    [12] 姜洪源, 李姗姗, 侯珍秀, 任玉坤, 孙永军. 非对称电极表面微观形貌对交流电渗流速的影响. 物理学报, doi: 10.7498/aps.60.020702
    [13] 王振东, 梁变, 刘中波, 樊锡君. 飞秒啁啾Gauss型脉冲在稠密Λ型三能级原子介质中的传播. 物理学报, doi: 10.7498/aps.59.7041
    [14] 马 晶, 章若冰, 赵华军, 张伟力, 王清月. 飞秒光参量振荡器中非线性晶体的空间啁啾与角色散. 物理学报, doi: 10.7498/aps.53.2184
    [15] 杨振军, 胡 巍, 傅喜泉, 陆大全, 郑一周. 超短啁啾脉冲光束空间奇异性的形成与消除. 物理学报, doi: 10.7498/aps.52.1920
    [16] 谷云鹏, 宫 野, 孙继忠. 颗粒与交流电弧等离子体温度场的相互作用. 物理学报, doi: 10.7498/aps.48.1078
    [17] 顾国庆, 陶瑞宝. 多孔和复合媒质直流电导率的计算方法(Ⅱ)——应用于各向同性和各向异性复合材料. 物理学报, doi: 10.7498/aps.37.582
    [18] 顾国庆, 陶瑞宝. 多孔和复合媒质直流电导率的计算方法(Ⅰ)——应用于周期性多孔媒质. 物理学报, doi: 10.7498/aps.37.439
    [19] 蒋祺, 龚昌德. 无序层状系统的电导率. 物理学报, doi: 10.7498/aps.37.941
    [20] 钱人元, 金祥凤, 周淑芹. 有机固体薄膜的交流电导. 物理学报, doi: 10.7498/aps.29.992
计量
  • 文章访问数:  69
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 上网日期:  2025-03-07

/

返回文章
返回