搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

交流电压激励液体电极放电中溶液电导率对放电模式的影响

李雪辰 张喜 朱国继 庞学霞 贾鹏英 孙辉 冉俊霞 李庆 李金懋

引用本文:
Citation:

交流电压激励液体电极放电中溶液电导率对放电模式的影响

李雪辰, 张喜, 朱国继, 庞学霞, 贾鹏英, 孙辉, 冉俊霞, 李庆, 李金懋

Influence of solution conductivity on discharge mode in an alternating-current voltage driven liquid-electrode discharge

LI Xuechen, ZHANG Xi, ZHU Guoji, PANG Xuexia, JIA Pengying, SUN Hui, RAN Junxia, LI Qing, LI Jinmao
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 液体电极放电系统在直流电压激励下会在液体阳极表面呈现自组织斑图结构,且斑图类型受到液体电导率(σ)的影响。σ对于交流电压激励液体电极放电的模式和斑图影响尚缺乏系统的研究。针对于此,本工作利用正弦交流电压激励液体电极放电系统,通过增加液体σ,发现放电从均匀模式过渡为斑图模式,且斑图模式中依次在液面观察到了齿轮、锯盘、离散点、单臂螺旋和同心圆环等结构。放电的电压电流波形表明放电仅发生在电压的负半周期(液体作瞬时阳极),气体击穿后放电电流迅速增加并很快达到峰值然后缓慢减小。对于均匀模式,放电电流的减小是单调的;但对于斑图模式,放电电流在减小过程中存在一段几乎不随时间变化的平台阶段。此外,随σ升高,峰值电流和平台电流均增大,且放电击穿时刻提前。利用增强型电荷耦合设备(ICCD)拍摄了均匀模式和斑图模式在液面附近的时间演化行为,发现不论何种放电模式最初液面上均产生的是均匀圆盘,而各种非均匀的斑图是产生在平台阶段。基于反应-扩散模型,通过改变离子强度与电流强度(对应变量ml)对均匀模式和斑图模式进行了数值仿真,获得了实验对应的放电模式。此外,采集了液面附近放电的发射光谱,计算了与电子温度和电子密度相关的谱线强度比。通过对光谱进行拟合,获得了液面附近放电的气体温度和分子振动温度。研究发现这些等离子体参数随σ的增加(对应着放电模式的变化)而升高。
    Excited by a direct-current voltage, self-organized patterns can be observed on the surface of the anode in liquid-electrode discharge system, which has shown that liquid electric conductivity (σ) plays an important role in determining the pattern type. Up to now, the influence of σ on the discharge mode and pattern type is unclear in the liquid-electrode discharge excited by an alternating-current voltage. Aim to this status, a liquid-electrode discharge system excited by an alternating-current sinusoidal voltage is employed to investigate the discharge modes with varying σ. Results indicate that with increasing σ, the discharge transitions from the uniform mode to the pattern mode, which undergoes various self-organized patterns such as gear, circular saw, discrete spots, single-arm spiral, and concentric rings on the liquid surface. Voltage and current waveforms reveal that the discharge occurs only in the negative half-cycle of applied voltage (when the liquid acts as the instantaneous anode). After gas breakdown, the discharge current rises rapidly to a peak, and then slowly decreases. For the uniform mode, the current decreases monotonically. However, during the current decrement in the pattern mode, there is a plateau in which the current keeps almost invariant with time. As σ increases, the values of the peak current and the plateau increase, and the breakdown moment advances. In addition, fast photography implemented by an intensified charge-coupled device (ICCD) reveals that regardless of the discharge mode, a uniform disk is initially generated on the liquid surface, and various non-uniform patterns are later formed during the plateau stage. Based on the reaction-diffusion model, numerical simulations are carried out through changing ion strength and current strength, which are related with the variables m and l.The simulated discharge modes are well in line with those obtained in the experiments. Moreover, spectral line intensity ratios related to electron temperature and electron density are determined through the spectra emitted from the discharge near the liquid surface. By fitting the spectra, gas temperature and molecular vibration temperature are obtained, which show an increasing trend with σ.
  • [1]

    Bruggeman P, Leys C 2009J. Phys. D:Appl. Phys. 42 053001

    [2]

    Li X C, Geng J L, Jia P Y, Wu K Y, Jia B Y, Kang P C 2018Acta Phys. Sin. 67 075201(in Chinese)[李雪辰,耿金伶,贾鹏英,吴凯玥,贾博宇,康鹏程2018物理学报67 075201]

    [3]

    Saifutdinov A I 2022Plasma Sources Sci. Technol. 31 094008

    [4]

    Richmonds C, Sankaran R M 2008Appl. Phys. Lett. 93 131501

    [5]

    Foster J E, Kovach Y E, Lai J, Garcia M C 2020Plasma Sources Sci. Technol. 29 034004

    [6]

    Kovačević V V, Sretenović G B, Obradović B M, Kuraica M M 2022J. Phys. D:Appl. Phys. 55 473002

    [7]

    Yang S Y, Wen X Q, Yang Y T, Li X 2024Acta Phys. Sin. 73 075203(in Chinese)[杨双越,温小琼,杨天元,李霄2024物理学报73 075203]

    [8]

    Jamróz P, Gręda K, Pohl P, Żyrnicki W 2014Plasma Chem Plasma Process. 34 25

    [9]

    Webb M R, Hieftje G M 2009Anal. Chem. 81 862

    [10]

    Chen Q, Li J S, Li Y F 2015J. Phys. D:Appl. Phys. 48 424005

    [11]

    Zheng P C, Liu K M, Wang J M, Dai Y, Yu B, Zhou X J, Hao H G, Luo Y 2012Appl. Surf. Sci. 259 494

    [12]

    Chen Z T, Xu R G, Chen P J, Wang Q 2020IEEE Trans. Plasma Sci. 48 3455

    [13]

    Liang J P, Zhao Z L, Zhou X F, Yang D Z, Yuan H, Wang W C, Qiao J J 2020Vacuum 181 109644

    [14]

    Zhang S, Oehrlein G S 2021J. Phys. D:Appl. Phys. 54 213001

    [15]

    Vanraes P, Bogaerts A 2021J. Appl. Phys. 129 220901

    [16]

    Bruggeman P, Ribežl E, Maslani A, Degroote J, Malesevic A, Rego R, Vierendeels J, Leys C 2008Plasma Sources Sci. Technol. 17 025012

    [17]

    Shirai N, Suga G, Sasaki K 2020Plasma Sources Sci. Technol. 29 025007

    [18]

    Shirai N, Ichinose K, Uchida S, Tochikubo F 2011Plasma Sources Sci. Technol. 20 034013

    [19]

    Bruggeman P, Liu J J, Degroote J, Kong M G, Vierendeels J, Leys C 2008J. Phys. D:Appl. Phys. 41 215201

    [20]

    Xu S F, Zhong X X 2015Phys. Plasmas 22 103519

    [21]

    Xu S F, Zhong X X 2016Phys. Plasmas 23 010701

    [22]

    Jia P, Gao K, Zhou S, Chen J Y, Wu J C, Wu K Y, Li X C 2021Plasma Sources Sci. Technol. 30 095021

    [23]

    Gao K, Wu K Y, Jia P Y, Jia B Y, Kang P C, Li X C 2019Phys. Plasmas 26 113501

    [24]

    Zhang S Q, Dufour T 2018Phys. Plasmas 25 073502

    [25]

    Rumbach P, Lindsay A E, Go D B 2019Plasma Sources Sci. Technol. 28 105014

    [26]

    Shirai N, Ibuka S, Ishii S 2009Appl. Phys. Express 2 036001

    [27]

    Yang Z M, Kovach Y, Foster J 2021J. Appl. Phys. 129163303

    [28]

    Verreycken T, Bruggeman P, Leys C 2009J. Appl. Phys 105 083312

    [29]

    Shirai N, Uchida S, Tochikubo F 2014Plasma Sources Sci. Technol. 23 054010

    [30]

    Li X C, Kang P C, Gao K, Zhou S, Wu K Y, Jia P Y 2020Plasma Processes Polym. 17 1900223

    [31]

    Kovach Y E, Garcia M C, Foster J E 2021Plasma Sources Sci. Technol. 30 015007

    [32]

    Li X C, Zhou S, Gao K, Ran J X, Wu K Y, Jia P Y 2022IEEE Trans. Plasma Sci. 50 1717

    [33]

    Qin X R, Feng B W, Wang R Y, Ma Y P X, Zhang Q, Zhong X X 2024Plasma Processes Polym. 21 2300055

    [34]

    Li X C, Geng J L, Jia P Y, Zhang P P, Zhang Q, Li Y R 2017Phys. Plasmas 24 113504

    [35]

    Zheng P C, Wang X M, Wang J M, Yu B, Liu H D, Zhang B, Yang R 2014Plasma Sources Sci. Technol. 24 015010

    [36]

    Srivastava T, Simeni M S, Nayak G, Bruggeman P J 2022Plasma Sources Sci. Technol. 31 085010

    [37]

    Shirai N, Uchida S, Tochikubo F, Ishii S 2011IEEE Trans. Plasma Sci. 39 2652

    [38]

    Chen Y F, Feng B W, Zhang Q, Wang R Y, Ostrikov K (Ken), Zhong X X 2020Plasma Sci. Technol. 22 055404

    [39]

    Li J M, Zhang X, Tian S, Meng T T, Wan W J, Ran J X, Sun H, Jia P Y, Pang X X, Li X C 2025Phys. Plasmas 32 032107

    [40]

    Ghimire B, Kolobov V I, Xu K G 2023Phys. Scr. 98 095602

    [41]

    Wu J C, Jia P Y, Ran J X, Chen J Y, Zhang F R, Wu K Y, Zhao N, Ren C H, Yin Z Q, Li X C 2021Phys. Plasmas 28 073501

    [42]

    Rajzer Y P 1997 Gas discharge physicst (Berlin Heidelberg:Springer) p167

    [43]

    Purwins H G, Stollenwerk L 2014Plasma Phys. Control. Fusion 56 123001

    [44]

    Trelles J P 2016J. Phys. D:Appl. Phys. 49 393002

    [45]

    Chen Z Y, Peng Y B, Wang R, He Y N, Cui W Z 2022Acta Phys. Sin. 71 240702(in Chinese)[陈泽煜,彭玉彬,王瑞,贺永宁,崔万照2022物理学报71 240702]

    [46]

    Li H M, Li G, Li Y J, Li Y T, Zhang Y, Cheng T, Nie C Q, Zhang J 2008Acta Phys. Sin. 57 0969(in Chinese)[李汉明,李钢,李英骏,李玉同,张翼,程涛,聂超群,张杰2008物理学报57 0969]

    [47]

    Li X C, Chang Y Y, Liu R F, Zhao H H, Di C 2013Acta Phys. Sin. 62 165205(in Chinese)[李雪辰,常媛媛,刘润甫,赵欢欢,狄聪2013物理学报62 165205]

    [48]

    Belmonte T, Noël C, Gries T, Martin J, Henrion G 2015Plasma Sources Sci. Technol. 24 064003

    [49]

    Zhang X X, Jia P Y, Ran J X, Li J M, Sun H X, Li X C 2024Acta Phys. Sin. 73 085201(in Chinese)[张雪雪,贾鹏英,冉俊霞,李金懋,孙换霞,李雪辰2024物理学报73 085201]

    [50]

    Choi J H, Lee T I, Han I, Baik H K, Song K M, Lim Y S, Lee E S 2006Plasma Sources Sci. Technol. 15 416

    [51]

    Liu Y D, Yan H J, Guo H F, Fan Z H, Wang Y Y, Wu Y, Ren C S 2018Phys. Plasmas 25033519

    [52]

    Wu K Y, Liu J N, Wu J C, Chen M, Ran J X, Pang X X, Jia P Y, Li X C, Ren C H 2023High Volt. 8 1161

    [53]

    Wu J C, Li X C, Ran J X, Jia H X, Wu K Y, Han G X, Liu J N, Chen J Y, Pang X X, Jia P Y 2023Plasma Processes Polym. 20 2200188

  • [1] 田爽, 张寒, 张喜, 张雪雪, 李雪辰, 李庆, 冉俊霞. 双气隙下介质阻挡放电斑图的放电特性与参数诊断. 物理学报, doi: 10.7498/aps.74.20250111
    [2] 冉俊霞, 张寒, 陈沁怡, 周奕汛, 苏彤, 李庆, 李雪辰. 环-点阵-同心环斑图的放电演化机理及光谱诊断研究. 物理学报, doi: 10.7498/aps.74.20250737
    [3] 孟星柔, 刘若琪, 贺亚峰, 邓腾坤, 刘富成. 反应扩散系统中交叉扩散引发的图灵斑图之间的转变. 物理学报, doi: 10.7498/aps.72.20230333
    [4] 戴碧涛, 谭索怡, 陈洒然, 蔡梦思, 秦烁, 吕欣. 基于手机大数据的中国人口迁徙模式及疫情影响研究. 物理学报, doi: 10.7498/aps.70.20202084
    [5] 万海容, 郝艳捧, 房强, 苏恒炜, 阳林, 李立浧. 大气压氦气介质阻挡放电单-多柱演化动力学. 物理学报, doi: 10.7498/aps.69.20200473
    [6] 张荣培, 王震, 王语, 韩子健. 反应扩散模型在图灵斑图中的应用及数值模拟. 物理学报, doi: 10.7498/aps.67.20171791
    [7] 司铁岩, 袁军华, 吴艺林, 唐建新. 细菌运动中的物理生物学. 物理学报, doi: 10.7498/aps.65.178703
    [8] 潘登, 郑应平. 路径约束条件下车辆行为的时空演化模型. 物理学报, doi: 10.7498/aps.64.078902
    [9] 朱国强, Jean-Pierre Boeuf, 李进贤. 压强与功率对高气压空气微波放电自组织结构影响的数值研究. 物理学报, doi: 10.7498/aps.61.235202
    [10] 贺亚峰, 冯晓敏, 张亮. 气体放电系统中时空斑图的时滞反馈控制. 物理学报, doi: 10.7498/aps.61.245204
    [11] 赵建森, 张芝涛, 王健, 俞哲. 一种基于5—20 kHz交流激励的U形等离子体天线. 物理学报, doi: 10.7498/aps.61.195201
    [12] 董丽芳, 谢伟霞, 赵海涛, 范伟丽, 贺亚峰, 肖红. 氩气/空气介质阻挡放电自组织超六边形斑图实验研究. 物理学报, doi: 10.7498/aps.58.4806
    [13] 严雄伟, 於海武, 曹丁象, 李明中, 郑建刚, 蒋东镔, 蒋新颖, 段文涛, 王明哲. 重频Yb:YAG片状激光器电光调Q时空演化模拟计算和实验研究. 物理学报, doi: 10.7498/aps.58.5798
    [14] 周海平, 蔡绍洪, 王春香. 含崩塌概率的一维沙堆模型的自组织临界性. 物理学报, doi: 10.7498/aps.55.3355
    [15] 董丽芳, 毛志国, 冉俊霞. 氩气介质阻挡放电不同放电模式的电学特性研究. 物理学报, doi: 10.7498/aps.54.3268
    [16] 张远涛, 王德真, 王艳辉. 大气压介质阻挡丝状放电时空演化数值模拟. 物理学报, doi: 10.7498/aps.54.4808
    [17] 尹增谦, 柴志方, 董丽芳, 李雪辰. 大气压氩气放电中的斑图形成. 物理学报, doi: 10.7498/aps.52.925
    [18] 全宏俊, 汪秉宏, 杨伟松, 王卫宁, 罗晓曙. 经纪人模仿在演化少数者博弈模型中引入的自组织分离效应. 物理学报, doi: 10.7498/aps.51.2667
    [19] 董丽芳, 李雪辰, 尹增谦, 王龙. 大气压介质阻挡放电中的自组织斑图结构. 物理学报, doi: 10.7498/aps.51.2296
    [20] 陈伟中, 魏荣爵. 双频激励液体表面斑图的Floquet分析. 物理学报, doi: 10.7498/aps.48.2259
计量
  • 文章访问数:  34
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-07-24

/

返回文章
返回