搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于手机大数据的中国人口迁徙模式及疫情影响研究

戴碧涛 谭索怡 陈洒然 蔡梦思 秦烁 吕欣

引用本文:
Citation:

基于手机大数据的中国人口迁徙模式及疫情影响研究

戴碧涛, 谭索怡, 陈洒然, 蔡梦思, 秦烁, 吕欣

Measuring the impact of COVID-19 on China’s population migration with mobile phone data

Dai Bi-Tao, Tan Suo-Yi, Chen Sa-Ran, Cai Meng-Si, Qin Shuo, Lu Xin
PDF
HTML
导出引用
  • 新型冠状病毒感染的肺炎(COVID-19)可通过人员接触与流动迅速传播, 因此研究人类迁徙和出行模式的变化对疫情防控至关重要. 本文基于手机运营商2020年春运及疫情暴发前后连续两个月的全国地级市之间的人口流动数据, 运用时序网络分析方法构建人口流动网络拓扑结构指标, 并通过引入地理衰减因子提出Spatial-Louvain社团检测算法, 研究平时、春运、疫情防控隔离和生产复工四阶段的人口迁徙模式的时空演化规律. 研究发现: 受各地疫情防控措施影响, 武汉封城后全国城市间人口流量急剧下降, 并持续至2月中旬. 疫情期间人口流动网络结构呈现四阶段的时空演化模式; 本文提出的空间网络社团检测算法比传统Louvain算法平均模块度值提高了14%; 中国城市分布以经济交互和地理位置为基础, 形成了以核心城市为中心, 向周边辐射的城市群格局; 疫情因素仅能在短暂时间内改变部分城市的城市群归属, 当该因素消失或减弱后, 城市群能迅速恢复原有格局.
    Population migration is an essential medium for the spread of epidemic, which can accelerate localized outbreaks of disease into widespread epidemic. Large-scale population movements between different areas increase the risk of cross-infection and bring great challenges to epidemic prevention and control. As COVID-19 can spread rapidly through human-to-human transmission, understanding its migration patterns is essential to modeling its spreading and evaluating the efficiency of mitigation policies applied to COVID-19. Using nationwide mobile phone data to track population flows throughout China at prefecture-level, we use the temporal network analysis to compare topological metrics of population mobility network during two consecutive months between before and after the outbreak, i.e. January 1st to February 29th. To detect the regions which are closely connected with population movements, we propose a Spatial-Louvain algorithm through adapting a gravity attenuation factor. Moreover, our proposed algorithm achieves an improvement of 14% in modularity compared with the Louvain algorithm. Additionally, we divide the period into four stages, i.e. normal time, Chunyun migration, epidemic interventions, and recovery time, to describe the patterns of mobility network’s evolution. Through the above methods, we explore the evolution pattern and spatial mechanism of the population mobility from the perspective of spatiotemporal big data and acquire some meaningful findings. Firstly, we find that after the lockdown of Wuhan and effective epidemic interventions, a substantial reduction in mobility lasted until mid-February. Secondly, based on the economic interaction and geographic location, China has formed an urban agglomeration structure with core cities centering and radiating toward the surroundings. Thirdly, in the extreme cases, the dominant factor of population mobility in remote areas is geographic location rather than economy. Fourthly, the urban agglomeration structure of cities is robust so that when the epidemic weakens or disappears, the city clusters can quickly recover into their original patterns.
      通信作者: 吕欣, xin_lyu@sina.com
    • 基金项目: 国家杰出青年科学基金(批准号: 72025405)、国家自然科学基金(批准号: 82041020, 71901067, 72001211)、国家自然科学基金重大项目(批准号: 91846301)、四川省科学技术厅新冠肺炎应急专项(批准号: 2020YFS0007)、湖南省自然科学基金(批准号: 2020JJ5679)和湖南省科学技术厅重点研发计划(批准号: 2019GK2131)资助的课题.
      Corresponding author: Lu Xin, xin_lyu@sina.com
    • Funds: Project supported by the National Science Fund for Distinguished Young Scholars of China (Grant No. 72025405), the National Natural Science Foundation of China (Grant Nos. 82041020, 71901067, 72001211), the Major Program of the National Natural Science Foundation of China (Grant No. 91846301), the Science and Technology New Coronary Pneumonia Emergency Program of Sichuan Province, China (Grant No. 2020YFS0007), the Natural Science Foundation of Hunan Province, China (Grant No. 2020JJ5679), and the Key R&D Program of Hunan Provincial Science and Technology Department, China (Grant No. 2019GK213)
    [1]

    Halloran M E, Vespignani A, Bharti N, Feldstein L R, Alexander K, Ferrari M, Shaman J, Drake J M, Porco T, Eisenberg J N 2014 Science 346 433Google Scholar

    [2]

    Jia J S, Lu X, Yuan Y, Xu G, Jia J, Christakis N A 2020 Nature 582 389Google Scholar

    [3]

    Colizza V, Barrat A, Barthélemy M, Vespignani A 2006 Proc. Natl. Acad. Sci. U.S.A. 103 2015Google Scholar

    [4]

    Li Q, Guan X H, Wu P, Wang X Y, Zhou L, Tong Y Q, Ren R Q, Leung S, Lau E, Wong J, Xing X S, Xiang N J, Wu Y, Li C, Chen Q, Li D, Liu T, Zhao J, Li M, Tu W X, Chen C D, Jin L M, Yang R, Wang Q, Zhou S H, Wang R, Liu H, Luo Y B, Liu Y, Shao G, Li H, Tao Z F, Yang Y, Deng Z Q, Liu B X, Ma Z T, Zhang Y P, Shi G Q, Lam T, Wu J, Gao G, Cowling B, Yang B, Leung G, Feng Z J 2020 N. Engl. J. Med. 382 1199Google Scholar

    [5]

    Guan W J, Ni Z Y, Hu Y, Liang W H, Ou C Q, He J X, Liu L, Shan H, Lei C L, Hui D S 2020 N. Engl. J. Med. 382 1708Google Scholar

    [6]

    Liu Y X, Yang Y, Zhang C, Huang F M, Wang F X, Yuan J, Wang Z Q, Li J X, Li J M, Feng C 2020 Sci. China, Ser. C Life Sci. 63 364Google Scholar

    [7]

    Zhou T, Liu Q, Yang Z, Liao J, Yang K, Bai W, Lu X, Zhang W 2020 J. Evid.-Based Med. 13 3Google Scholar

    [8]

    栾荣生, 王新, 孙鑫, 陈兴蜀, 周涛, 刘权辉, 吕欣, 吴先萍, 谷冬晴, 唐明霜, 崔慧杰, 单雪峰, 欧阳净, 张本, 张伟 2020 四川大学学报(医学版) 51 131Google Scholar

    Luan R S, Wang X, Sun X, Zhou T, Liu Q H, Lu X, Wu X P, Gu D Q, Tang M S, Cui H J, Shan X F, Ouyang J, Zhang B, Zhang W 2020 J. Sichuan.Univ. 51 131Google Scholar

    [9]

    周涛, 刘权辉, 杨紫陌, 廖敬仪, 杨可心, 白薇, 吕欣, 张伟 2020 中国循证医学杂志 20 359Google Scholar

    Zhou T, Liu Q, Yang Z, Liao J, Yang K, Bai W, Lu X, Zhang W 2020 J. Evid.-Based Dent. Pract. Med. China 20 359Google Scholar

    [10]

    谭索怡, 曹自强, 秦烁, 陈洒然, 赛斌, 郭淑慧, 刘楚楚, 蔡梦思, 周涛, 张伟, 吕欣 2020 电子科技大学学报 49 788Google Scholar

    Tan S Y, Cao Z Q, Qin S, Chen S R, Sai B, Guo S H, Liu C C, Cai M S, Zhou T, Zhang W, Lu X 2020 J. Univ. Electron. Sci. Technol. China 49 788Google Scholar

    [11]

    魏永越, 卢珍珍, 杜志成, 张志杰, 赵杨, 沈思鹏, 王波, 郝元涛, 陈峰 2020 中华流行病学杂志 41 470Google Scholar

    Wei Y Z, Lu Z Z, Du Z C, Zhang Z J, Zhao Y, Shen S P, Wang B, Hao Y T, Chen F 2020 Chinese J. Epidemiology 41 470Google Scholar

    [12]

    Cohen J 2020 https://www.sciencemag.org/news/2020/02/scientists-are-racing-model-next-moves-coronavirus-thats-stillhard-predict [2021-1-11]

    [13]

    Brockmann D, Helbing D 2013 Science 342 1337Google Scholar

    [14]

    Wu J T, Leung K, Leung G M 2020 The Lancet 395 689Google Scholar

    [15]

    王聪, 严洁, 王旭, 李敏 2020 物理学报 69 080701Google Scholar

    Wang C, Yan J, Wang X, Li M 2020 Acta Phys. Sin. 69 080701Google Scholar

    [16]

    Gross B, Zheng Z, Liu S, Chen X, Sela A, Li J, Li D, Havlin S 2020 arXiv: 2003. 08382 [Statistical Physics]

    [17]

    许小可, 文成, 张光耀, 孙皓宸, 刘波, 王贤文 2020 电子科技大学学报 49 324Google Scholar

    Xu X K, Wen C, Sun G Y, Sun H C, Liu B, Wang X W 2020 J. Univ. Electron. Sci. Technol. China 49 324Google Scholar

    [18]

    Tian H Y, Liu Y H, Li Y D, Wu C H, Chen B, Kraemer M U, Li B Y, Cai J, Xu B, Yang Q Q 2020 Science 368 638Google Scholar

    [19]

    Xu C H, Yu Y G, Yang Q C, Lu Z Z 2020 arXiv: 2004. 12541 [physics. soc-ph]

    [20]

    Bengtsson L, Gaudart J, Lu X, Moore S, Wetter E, Sallah K, Rebaudet S, Piarroux R 2015 Sci. Rep. 5 8923Google Scholar

    [21]

    Wilson R, Erbach S E, Albert M, Power D, Tudge S, Gonzalez M, Guthrie S, Chamberlain H, Brooks C, Hughes C 2016 PLoS. Curr. 1 8Google Scholar

    [22]

    Lu X, Bengtsson L, Holme P 2012 Proc. Natl. Acad. Sci. U.S.A. 109 11576Google Scholar

    [23]

    中华人民共和国工业和信息化部无线电管理局 (miit.gov.cn) https://www.miit.gov.cn/jgsj/wgj/gzdt/art/2020/art_87ace87acac0426a99f4213e4d578cac.html [2021-1-11]

    [24]

    中华人民共和国工业和信息化部无线电管理局 (miit.gov.cn) https://www.miit.gov.cn/jgsj/wgj/gggs/art/2020/art_9212747d4c794f919bd4aa03a4ca2fcf.html [2021-1-11]

    [25]

    Holme P, Saramaki J 2012 Phys. Rep. 519 97Google Scholar

    [26]

    Fortunato S 2010 Phys. Rep. 486 75Google Scholar

    [27]

    Zipf G K 1946 Am. Sociol. Rev. 11 677Google Scholar

    [28]

    Blondel V D, Guillaume J L, Renaud L, Etienne L 2008 J. Stat. Mech.: Theory Exp. 10 P10008Google Scholar

    [29]

    Newman M E J 2004 Phys. Rev. E 70 056131Google Scholar

    [30]

    新一线城市研究所 (yicai.com) https://www.maigoo.com/news/550235.html [2021-1-11]

    [31]

    Barbosa H, Barthelemy M, Ghoshal G, James C R, Lenormand M, Louail T, Menezes R, Ramasco J J, Simini F, Tomasini M 2018 Phys. Rep. 734 1Google Scholar

  • 图 1  (a) 人口流动网络边数时序特征; (b) 人口总流量时序特征

    Fig. 1.  (a) Temporal characteristics of the number of edges in the population mobility network; (b) temporal characteristics of total population flow.

    图 2  人口流动网络中心性指标时序特征 (a) 平均度; (b) 介数; (c) 接近中心性; (d) 加权度; (e) 网络密度; (f) 集聚系数

    Fig. 2.  Temporal characteristics of population mobility network centrality metrics: (a) Average degree; (b) betweenness centrality; (c) closeness centrality; (d) weighted degree; (e) density; (f) clustering coefficient.

    图 3  SL算法与Louvain算法的人口流动网络社团检测结果对比 (a) SL算法社团检测结果; (b) Louvain算法社团检测结果; (c) 模块度值

    Fig. 3.  Comparison between SL algorithm and Louvain algorithm: (a) Results of SL; (b) results of Louvain; (c) modularity value.

    图 4  基于人口流动网络的四阶段城市集群演化 (a) 常态化阶段; (b) 春运阶段; (c) 隔离阶段; (d)复工阶段

    Fig. 4.  Four-stage evolution of urban agglomeration based on population mobility network: (a) Normal times; (b) chunyun migration; (c) epidemic interventions; (d) recovery times

    图 5  基于人口流动网络的四阶段城市集群演化桑基图

    Fig. 5.  Sankey diagram of four-stage evolution of urban agglomeration based on population mobility network.

    表 1  网络中心性指标

    Table 1.  Network centrality metrics

    中心性指标 公式 描述
    $k_{i} = \displaystyle\sum\nolimits_{j = 1}^{N} a_{ij}$ N为网络节点总数, $a_{ij}$表示节点i与节点j之间的连接, 如果连接存在, 则$a_{ij} = 1$; 否则$a_{ij} = 0$.
    加权度 $k_{i}^{w} =\displaystyle \sum\nolimits_{j = 1}^{N} w_{ij}$ $w_{ij}$表示节点i与节点j之间的连接权值, 在本文中指两个城市间的人口流动数量.
    密度 $\rho = \dfrac{M}{N(N-1)}$ M为网络中实际存在的边数, N为节点总数. 该指标用来衡量网络疏密.
    集聚系数 $C_{i} = \dfrac{T(i)}{k_{i}\left(k_{i}-1\right)-2 k_{i}^{-1} }$ 其中$T(i)$是经过节点i的有向三角形的数量, $k_{i}$是节点i的入度和出度之和, $k_{i}^{-1}$是$k_{i}$的倒数.
    介数 $B_{i}^{w} = \displaystyle\sum\limits_{s \neq i \neq t} \frac{\sigma_{st}(i)}{\sigma_{st} }$ $\sigma_{s t}$为从节点s到节点t的最短路径数量, $\sigma_{s t}(i)$为从节点s到节点t并且经过节点i的最短路径数量.
    接近中心性 $C_{i} = \dfrac{N}{\displaystyle\sum\nolimits_{j = 1}^{N} {\rm {dis} }_{ij} }$ N为节点总数, ${\rm {dis}}_{ij}$为节点i到节点j的距离.
    下载: 导出CSV

    表 2  人口流动网络四阶段网络基础特征

    Table 2.  Basic characteristics of the population mobility network in four stages.

    网络密度 时间 边数 平均日流量 平均度 图密度 集聚系数
    常态化 1.1—1.9 83918 107060322 255.016 0.625 0.779
    春运 1.10—1.23 93591 125834714 255.016 0.697 0.818
    居家隔离 1.24—2.10 84969 46081244 231.523 0.633 0.775
    复工 2.11—2.29 77009 44067415 209.834 0.573 0.738
    下载: 导出CSV
  • [1]

    Halloran M E, Vespignani A, Bharti N, Feldstein L R, Alexander K, Ferrari M, Shaman J, Drake J M, Porco T, Eisenberg J N 2014 Science 346 433Google Scholar

    [2]

    Jia J S, Lu X, Yuan Y, Xu G, Jia J, Christakis N A 2020 Nature 582 389Google Scholar

    [3]

    Colizza V, Barrat A, Barthélemy M, Vespignani A 2006 Proc. Natl. Acad. Sci. U.S.A. 103 2015Google Scholar

    [4]

    Li Q, Guan X H, Wu P, Wang X Y, Zhou L, Tong Y Q, Ren R Q, Leung S, Lau E, Wong J, Xing X S, Xiang N J, Wu Y, Li C, Chen Q, Li D, Liu T, Zhao J, Li M, Tu W X, Chen C D, Jin L M, Yang R, Wang Q, Zhou S H, Wang R, Liu H, Luo Y B, Liu Y, Shao G, Li H, Tao Z F, Yang Y, Deng Z Q, Liu B X, Ma Z T, Zhang Y P, Shi G Q, Lam T, Wu J, Gao G, Cowling B, Yang B, Leung G, Feng Z J 2020 N. Engl. J. Med. 382 1199Google Scholar

    [5]

    Guan W J, Ni Z Y, Hu Y, Liang W H, Ou C Q, He J X, Liu L, Shan H, Lei C L, Hui D S 2020 N. Engl. J. Med. 382 1708Google Scholar

    [6]

    Liu Y X, Yang Y, Zhang C, Huang F M, Wang F X, Yuan J, Wang Z Q, Li J X, Li J M, Feng C 2020 Sci. China, Ser. C Life Sci. 63 364Google Scholar

    [7]

    Zhou T, Liu Q, Yang Z, Liao J, Yang K, Bai W, Lu X, Zhang W 2020 J. Evid.-Based Med. 13 3Google Scholar

    [8]

    栾荣生, 王新, 孙鑫, 陈兴蜀, 周涛, 刘权辉, 吕欣, 吴先萍, 谷冬晴, 唐明霜, 崔慧杰, 单雪峰, 欧阳净, 张本, 张伟 2020 四川大学学报(医学版) 51 131Google Scholar

    Luan R S, Wang X, Sun X, Zhou T, Liu Q H, Lu X, Wu X P, Gu D Q, Tang M S, Cui H J, Shan X F, Ouyang J, Zhang B, Zhang W 2020 J. Sichuan.Univ. 51 131Google Scholar

    [9]

    周涛, 刘权辉, 杨紫陌, 廖敬仪, 杨可心, 白薇, 吕欣, 张伟 2020 中国循证医学杂志 20 359Google Scholar

    Zhou T, Liu Q, Yang Z, Liao J, Yang K, Bai W, Lu X, Zhang W 2020 J. Evid.-Based Dent. Pract. Med. China 20 359Google Scholar

    [10]

    谭索怡, 曹自强, 秦烁, 陈洒然, 赛斌, 郭淑慧, 刘楚楚, 蔡梦思, 周涛, 张伟, 吕欣 2020 电子科技大学学报 49 788Google Scholar

    Tan S Y, Cao Z Q, Qin S, Chen S R, Sai B, Guo S H, Liu C C, Cai M S, Zhou T, Zhang W, Lu X 2020 J. Univ. Electron. Sci. Technol. China 49 788Google Scholar

    [11]

    魏永越, 卢珍珍, 杜志成, 张志杰, 赵杨, 沈思鹏, 王波, 郝元涛, 陈峰 2020 中华流行病学杂志 41 470Google Scholar

    Wei Y Z, Lu Z Z, Du Z C, Zhang Z J, Zhao Y, Shen S P, Wang B, Hao Y T, Chen F 2020 Chinese J. Epidemiology 41 470Google Scholar

    [12]

    Cohen J 2020 https://www.sciencemag.org/news/2020/02/scientists-are-racing-model-next-moves-coronavirus-thats-stillhard-predict [2021-1-11]

    [13]

    Brockmann D, Helbing D 2013 Science 342 1337Google Scholar

    [14]

    Wu J T, Leung K, Leung G M 2020 The Lancet 395 689Google Scholar

    [15]

    王聪, 严洁, 王旭, 李敏 2020 物理学报 69 080701Google Scholar

    Wang C, Yan J, Wang X, Li M 2020 Acta Phys. Sin. 69 080701Google Scholar

    [16]

    Gross B, Zheng Z, Liu S, Chen X, Sela A, Li J, Li D, Havlin S 2020 arXiv: 2003. 08382 [Statistical Physics]

    [17]

    许小可, 文成, 张光耀, 孙皓宸, 刘波, 王贤文 2020 电子科技大学学报 49 324Google Scholar

    Xu X K, Wen C, Sun G Y, Sun H C, Liu B, Wang X W 2020 J. Univ. Electron. Sci. Technol. China 49 324Google Scholar

    [18]

    Tian H Y, Liu Y H, Li Y D, Wu C H, Chen B, Kraemer M U, Li B Y, Cai J, Xu B, Yang Q Q 2020 Science 368 638Google Scholar

    [19]

    Xu C H, Yu Y G, Yang Q C, Lu Z Z 2020 arXiv: 2004. 12541 [physics. soc-ph]

    [20]

    Bengtsson L, Gaudart J, Lu X, Moore S, Wetter E, Sallah K, Rebaudet S, Piarroux R 2015 Sci. Rep. 5 8923Google Scholar

    [21]

    Wilson R, Erbach S E, Albert M, Power D, Tudge S, Gonzalez M, Guthrie S, Chamberlain H, Brooks C, Hughes C 2016 PLoS. Curr. 1 8Google Scholar

    [22]

    Lu X, Bengtsson L, Holme P 2012 Proc. Natl. Acad. Sci. U.S.A. 109 11576Google Scholar

    [23]

    中华人民共和国工业和信息化部无线电管理局 (miit.gov.cn) https://www.miit.gov.cn/jgsj/wgj/gzdt/art/2020/art_87ace87acac0426a99f4213e4d578cac.html [2021-1-11]

    [24]

    中华人民共和国工业和信息化部无线电管理局 (miit.gov.cn) https://www.miit.gov.cn/jgsj/wgj/gggs/art/2020/art_9212747d4c794f919bd4aa03a4ca2fcf.html [2021-1-11]

    [25]

    Holme P, Saramaki J 2012 Phys. Rep. 519 97Google Scholar

    [26]

    Fortunato S 2010 Phys. Rep. 486 75Google Scholar

    [27]

    Zipf G K 1946 Am. Sociol. Rev. 11 677Google Scholar

    [28]

    Blondel V D, Guillaume J L, Renaud L, Etienne L 2008 J. Stat. Mech.: Theory Exp. 10 P10008Google Scholar

    [29]

    Newman M E J 2004 Phys. Rev. E 70 056131Google Scholar

    [30]

    新一线城市研究所 (yicai.com) https://www.maigoo.com/news/550235.html [2021-1-11]

    [31]

    Barbosa H, Barthelemy M, Ghoshal G, James C R, Lenormand M, Louail T, Menezes R, Ramasco J J, Simini F, Tomasini M 2018 Phys. Rep. 734 1Google Scholar

  • [1] 张震, 易仕和, 刘小林, 陈世康, 张臻. 高超声速条件下凸曲率壁面混合层的流动演化. 物理学报, 2024, 73(10): 104701. doi: 10.7498/aps.73.20240128
    [2] 张晶, 王海英, 顾长贵, 杨会杰. 考虑出行行为调整的疫情传播模型与新冠疫情预测. 物理学报, 2023, 72(9): 098801. doi: 10.7498/aps.72.20222435
    [3] 罗勇, 杨党国, 武从海, 李虎, 张树海, 吴军强. 三维空腔流动波系建模及模态演化. 物理学报, 2022, 71(19): 194301. doi: 10.7498/aps.71.20220922
    [4] 季仁才, 彭桂龙, 徐振伟, 杨诺, 郝磬. 热电空气消毒系统. 物理学报, 2022, 71(16): 168401. doi: 10.7498/aps.71.20220757
    [5] 孙皓宸, 刘肖凡, 许小可, 吴晔. 基于连续感染模型的新冠肺炎校园传播与防控策略分析. 物理学报, 2020, 69(24): 240201. doi: 10.7498/aps.69.20201106
    [6] 王聪, 严洁, 王旭, 李敏. 新型冠状病毒肺炎早期时空传播特征分析. 物理学报, 2020, 69(8): 080701. doi: 10.7498/aps.69.20200285
    [7] 万海容, 郝艳捧, 房强, 苏恒炜, 阳林, 李立浧. 大气压氦气介质阻挡放电单-多柱演化动力学. 物理学报, 2020, 69(14): 145203. doi: 10.7498/aps.69.20200473
    [8] 李冀鹏, 洪峰, 白薇, 廖敬仪, 张彦如, 周涛. 评估新型冠状病毒地区防控效果的一种近似方法. 物理学报, 2020, 69(10): 100201. doi: 10.7498/aps.69.20200441
    [9] 温贺平, 禹思敏, 吕金虎. 基于Hadoop大数据平台和无简并高维离散超混沌系统的加密算法. 物理学报, 2017, 66(23): 230503. doi: 10.7498/aps.66.230503
    [10] 武宇, 易仕和, 何霖, 全鹏程, 朱杨柱. 基于流动显示的压缩拐角流动结构定量研究. 物理学报, 2015, 64(1): 014703. doi: 10.7498/aps.64.014703
    [11] 潘登, 郑应平. 路径约束条件下车辆行为的时空演化模型. 物理学报, 2015, 64(7): 078902. doi: 10.7498/aps.64.078902
    [12] 李文慧, 忽满利, 马志博, 种兰祥, 万云. LiNbO3晶体中屏蔽光伏孤子自偏转的时空演化与可控因素. 物理学报, 2012, 61(2): 020201. doi: 10.7498/aps.61.020201
    [13] 刘诗序, 关宏志, 严海. 网络交通流动态演化的混沌现象及其控制. 物理学报, 2012, 61(9): 090506. doi: 10.7498/aps.61.090506
    [14] 简小华, 张淳民, 祝宝辉, 任文艺. 时空混合调制型偏振干涉成像光谱仪数据处理研究. 物理学报, 2010, 59(9): 6131-6137. doi: 10.7498/aps.59.6131
    [15] 施华萍, 柯见洪, 孙策, 林振权. 中国人口分布规律及演化机理研究. 物理学报, 2009, 58(1): 1-8. doi: 10.7498/aps.58.1.1
    [16] 严雄伟, 於海武, 曹丁象, 李明中, 郑建刚, 蒋东镔, 蒋新颖, 段文涛, 王明哲. 重频Yb:YAG片状激光器电光调Q时空演化模拟计算和实验研究. 物理学报, 2009, 58(8): 5798-5804. doi: 10.7498/aps.58.5798
    [17] 郑春阳, 刘占军, 李纪伟, 张爱清, 裴文兵. 无碰撞等离子体中电子束流不稳定性的时空演化研究. 物理学报, 2005, 54(5): 2138-2146. doi: 10.7498/aps.54.2138
    [18] 张远涛, 王德真, 王艳辉. 大气压介质阻挡丝状放电时空演化数值模拟. 物理学报, 2005, 54(10): 4808-4815. doi: 10.7498/aps.54.4808
    [19] 刘成森, 王德真. 空心圆管端点附近等离子体源离子注入过程中鞘层的时空演化. 物理学报, 2003, 52(1): 109-114. doi: 10.7498/aps.52.109
    [20] 贺智勇, 靳根明, 李祖玉, 段利敏, 戴光曦, 吴和宇, 张保国, 文万信, 漆玉金, 罗清政, 王宏伟, 王素芳. 25MeV/u40Ar+197Au反应中高激发热核的时空演化. 物理学报, 1998, 47(6): 916-921. doi: 10.7498/aps.47.916
计量
  • 文章访问数:  9623
  • PDF下载量:  228
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-08
  • 修回日期:  2021-02-02
  • 上网日期:  2021-03-09
  • 刊出日期:  2021-03-20

/

返回文章
返回